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Abstract 

Researchers are challenged to understand the distribution of biodiversity on the landscape or 

determine if community-level assemblages respond to landscape variability. Canonical ordinations 

and multispecies occupancy modeling are often utilized and differ in their analytical scale and 

technique. Community-level data for carnivores (n=18) from camera trapping data (n=60) were 

tested for their collective response to covariates (distance to villages, roads, plantations, streams, 

and also topographic variables for elevation and slope) in Bukit Barsan Selatan National Park. 

Redundancy analysis (RDA) results confirmed that the carnivore community responded to the 

anthropogenic covariates, with carnivore detections being higher in areas at a high distance from 

roads and plantations medium distance villages. Then, multispecies occupancy models (MSOM), a 

comparatively finer temporal scale analysis that incorporated imperfect detections, were compared 

to RDA. We fit four models (full, anthropogenic, natural, and null) that were mainly inconclusive. 

In some MSOM models, the carnivore community did respond to environmental covariates, 

although the coefficients did not show a consistent response between seasons or years. These 

results indicate that RDA was able to detect broad-scale covariate effects that were not able to be 
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modeled by MSOM and that these scaling and imperfect detection issues should be considered 

when attempting to understand landscape community diversity. 

 

Keywords: Biodiversity, carnivores, community ecology, multi-species occupancy, redundancy 

analysis 

Introduction 

Land-use change and anthropogenic disturbances have been shown to have severe effects on 

biodiversity, for example, losses of alpha diversity (species richness) through forest conversion 

(Gibson et al., 2011) or agricultural expansion (Laurance et al., 2014).  The urgency of protecting 

the world's megafauna has become apparent from global analyses, showing Indonesia to be within 

the top 10 countries globally for megafauna decline (Ripple et al., 2016, 2017). Due to the 

conversion of natural forests to agriculture, logging, hunting, and trapping, significant alpha 

diversity losses have occurred in Indonesia (Rodrigues et al., 2014). However, there is an 

insufficient capacity to predict alpha and beta biodiversity components on the landscape 

undergoing anthropogenic conversions and then enact interventions that deal with local-scale 

biodiversity conservation (Wearn et al., 2019).  Researchers and conservation planners are 

challenged to prioritize areas on the landscape to benefit the conservation of the ecosystem 

components, as it is challenging to gauge community-level richness within a matrix of landscape 

variability (Zipkin et al., 2009).  

Various guilds react to gradients of land use land cover (Goijman et al., 2015; Wearn et al., 2019) 

or a landscape matrix of human disturbances (Easter et al., 2019; Rezaei et al., 2021). Other 

studies have classified species into guilds based on relatedness in terms of habitat preferences or 

diet, where inferences were more specific to a subset of species (Pacifici et al., 2014). Previous 

camera trapping studies have classified mammal communities into various functional effects 

groups like trophic guilds or conservation status to look at habitat responses.  For example, camera 

trapping data were used to show dramatic declines of community richness for many guilds in oil 

palm plantations, compared to logged forests or old-growth areas (Wearn et al., 2017).  

Species occurrence and abundance data, along with corresponding environmental covariates, are 

the basis from which inferences on community-level modeling efforts are built, seeking to answer 

fundamental questions central to community ecology (Ovaskainen et al., 2016). Species 

occurrence data are usually analyzed separately and pooled in community-level analysis to 

understand how environmental factors affect species richness across landscape gradients (Zipkin 

et al., 2009).  

Understanding community-level biodiversity through multivariate methods has been the most 

widely applied methodology in understanding the structure of ecological community composition 

related to environmental factors (Borcard et al., 2011). Ordinations have long been a central 

exploratory methodology in using dimensionality reduction to produce factors or principal 

components used for identifying the most significant variables within the covariate hyperspace.  

For example, principal components analysis can reduce an n-matrix of sites within an 

environmental covariate space to identify one or two principal components composed of a 

proportion of each variable and more heavily composed of more significant variables 
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differentiating the sites from one another (Rao, 1964). Other methods, like redundancy analyses 

(RDA), can examine the multispecies community table along environmental gradients, perform 

multiple regression on the multivariate response, and reduce dimensions using eigenanalysis 

approaches to determine significant community-level responses to landscape variability (Dray et 

al., 2012; Rao, 1964). Researchers have suggested combining classical statistical models for 

community compositional data, like constrained ordinations or other multivariate analyses with 

emerging methods for spatial pattern analyses (Dray et al., 2012), or with hierarchical community 

models (Yamaura et al., 2019), for comprehensive approaches in understanding covariate effects 

on a community.  

Another inferential methodology for understanding community structure within a heterogeneous 

landscape is the multispecies occupancy model (MSOM) (Dorazio & Royle, 2005). These 

hierarchical models combine presence-absence data tables for each species, use community-level 

parameters, and include a detectability model to account for imperfect detection (MacKenzie et 

al., 2002). Furthermore, MSOM provides a robust inference for multiple species' occupancy, 

including rarer species, resulting in estimates for species richness estimates and any community-

level co-variability.  

MSOM has informed appropriate multispecies conservation management actions from site-level 

species richness estimates. The conservation implications of multispecies occupancy models have 

assisted in designing management programs (Zipkin et al., 2010), such as assessing patrol 

enforcement management regimes (Farr et al., 2019) and other anthropogenic disturbances like 

poaching (Moore et al., 2018).  Inferences from MSOM for mammals have been able to show a 

response to anthropogenic disturbances like habitat fragmentation and land conversion (Boron et 

al., 2019; Cavada et al., 2019; Dechner et al., 2018; Rovero et al., 2014), or other natural features 

like distance to water (Cavada et al., 2019). 

This study discusses the analytical scale implications in the modeling workflow, as RDA and 

MSOM are analyzing different temporal scales. RDA methods are referred to as a "global-scale" 

analytical structure because they seek to understand the broad structure of the community-level 

data, utilizing data tables of species observations collated across years of survey effort, where 

there are no assumptions there are finite windows of time to restrict the analysis. MSOM is 

referred to here as a "local-scale" analysis because they are collected throughout a finite window 

of time to meet the assumptions of population closure, which indicates there is no species 

immigration or emigration from the site, resulting in repeated surveys within this time window 

data, and also scaled into hours, days, weeks, or months depending on the survey or analysis 

schema. This study seeks to investigate exploratory data analysis and the RDA as a broader 

temporal scale analysis to understand covariate effects and assess MSOM response to the same 

covariates at more localized temporal scales. These methods are compared and contrasted for their 

ability to detect a response in the carnivore community, as we discuss this inherent temporal 

scaling difference between the analytical methods and their ability and inability to incorporate 

imperfect detection. 

This research asked principal questions at the intersection of landscape ecology and community 

ecology.  What were the primary landscape responses that can be modeled for carnivore 

communities, utilizing available environmental and anthropogenic covariate data in BBSNP and 

comparing these multispecies analysis methodologies? Carnivore communities in BBSNP, 
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Sumatra, Indonesia, have a diverse species pool with the presence of many rare and elusive 

species of wild felids that are a part of a wider carnivore community, continually being threatened 

by anthropogenic factors, and we seek to further qualify that threat through these discussed 

modeling approaches.  

 

Material and methods 

Study area 

To further understand terrestrial mammal distributions in general, Tropical Ecology Assessment 

and Monitoring (TEAM) Network implemented assessments over seven years (2010-2016), in 

Bukit Barisan Selatan National Park (BBSNP), Lampung province, Sumatra, Indonesia (-5°49' S 

104°31'E) (Fig 1). 

. 

 

Figure 1. Map of land uses and tiger conservation zones around Sumatra, with a subset of the study area 

within Bukit Barisan Selatan National Park (yellow polygon) with camera stations' locations (red circle). 

Camera stations were colored to designate blocks: block 1 (pink) and block 2 (blue) 

BBSNP is a 3568 km2 with coastal forest, mangrove forest, and lowland rainforest with a 

mountain range reaching a 1964m elevation(Pusparini et al., 2018). The monsoon season occurs 

seasonally between November to May. The park is known for the many unique and endangered 

species, like the Sumatran elephant, Sumatran rhinoceros, and Sumatran tiger. Aside from this 

study, several research studies have analyzed the carnivores in BBSNP in Sumatra, assessing the 

distribution and habitat use of felid species ( McCarthy et al., 2015), or specifically Sumatran 

tigers (Allen et al., 2020; Jaya et al., n.d.; O'Brien et al., 2003; Pusparini et al., 2018).  Threats to 

the park's rainforest's integrity include agricultural encroachment and the development of 

enclaves where squatters have claimed the forest for their uses (O'Brien & Kinnaird, 1996). 

Camera Trapping Design 

These surveys used camera traps (n = 60) arranged in a systematic grid with cameras placed at the 

center of each 2km2 grid site (Fig 1). During the seven years the study site was operational, there 

was a rotational design where cameras were moved in April-May and June-July to different sets 
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of locations according to the yearly data collection protocol. The entire camera trapping grid ran 

each April - August every year over 544 calendar days, producing 2393 camera trapping nights.  

The dataset contained 39-59 camera sites with variations year to year, surveyed 85-163 days per 

year, for an average of 25-32 days per camera (Table 1). All cameras were set for 24 hours, and 

detections were collated into days, weeks, or months as per the modeling temporal scale. 

 

Table 1. Camera station variability in camera number and survey days 

Year Total (April -July) Block1 (April-May) Block2 (June-July) 

# 

Cameras 

Survey Days # 

Cameras 

Survey 

Days 

#Cameras Survey 

Days 2010 59 104 29 36 30 37 
2011 55 85 27 34 28 35 
2012 50 96 25 36 25 53 
2013 39 108 20 35 19 36 
2014 43 111 23 73 20 70 
2015 39 100 25 36 14 35 

2016 51 163 27 60 24 81 

 

Study fauna 

The studied fauna included all mammalian carnivores detected during the seven years of the 

camera trapping survey. There were 18 carnivores with 135 detection days between 2010-2016 

(Table 2).  

 

Table 2. Eighteen Carnivores Detected from TEAM Network Cameras 2010-2016 

Family Genus Species Common name IUCN  Detections 

Mustelidae Aonyx cinerea Asian small-clawed otter VU 1 
Viverridae Arctictis binturong Binturong VU 1 
Viverridae Arctogalidia trivirgata Small toothed palm civet LC 1 
Canidae  Canis lupus familiaris Domestic dog LC 1 
Canidae Cuon alpinus Dhole EN 4 
Viverridae Cynogale bennettii Otter Civet EN 1 

Ursidae  Helarctos malayanus Sun bear VU 25 
Viverridae Hemigalus derbyanus Banded palm civet NT 29 
Herpestidae Herpestes brachyurus Short-tailed mongoose NT 1 
Viverridae Lutra lutra Eurasian otter NT 1 
Felidae  Neofelis diardi Clouded leopard VU 5 
Viverridae Paguma larvata Masked palm civet LC 9 

Felidae Panthera tigris Tiger EN 25 
Viverridae Paradoxurus hermaphroditus Asian palm civet LC 1 
Felidae Pardofelis marmorata Marbled cat NT 6 
Felidae Pardofelis temminckii Golden Cat NT 6 
Felidae Prionailurus bengalensis Leopard Cat LC 10 
Prionodontidae Prionodon linsang Banded linsang LC 5 

 

This particular study region has diverse species of special status carnivores. For example, three 

endangered species were detected: tiger (Panthera tigris), dhole (Cuon alpinus), and otter civet 

(Cynogale bennettii). The most abundant carnivores in the survey by the number of detections 

were the banded palm civet (Hemigalus derbyanus) (n=29), and also IUCN vulnerable sun bear 

(Helarctos malayanus) (n=25), and IUCN endangered tiger (n=25). Furthermore, many species 

were only detected one time during all seven years of the survey:  binturong (Arctictis binturong), 
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domestic dogs (Canis familiaris), short-tailed mongoose (Herpestes brachyurus), Asian small-

clawed otter (Aonyx cinerea), otter civet, Asian palm civet (Paradoxurus hermaphroditus), and 

small-toothed palm civet (Arctogalidia trivirgata). There were several species presumed extant 

by IUCN and not detected during the surveys (Table 3). These undetected species were not 

included in modeling analysis.  

 

Table 3. Eight Carnivore Species Presumed Extant by IUCN and Not Detected by Camera Trap Surveys. 

These species were not included in any of the modeling efforts 

 

Environmental Covariates 

Environmental covariates were generated from freely available geospatial data. Elevation and 

slope were derived from Shuttle Radar Topography Mission (SRTM) raster data. Distance to 

roads, streams, plantations, and villages was derived from shapefile open street map data and 

generating a Euclidean distance raster. Any continuous covariates were scaled (-1,1). Program 

ArcGIS was used for covariate derivations.  

 

Statistical Analysis and Modeling Framework 

Exploratory Data Techniques 

To understand the distribution of camera traps in the hyperspace of covariate information, first, a 

PCA was used. Environmental covariates were checked for multivariate normality using the 

MVN package(Korkmaz et al., 2019). The scree plot identified two significant principal 

components using an eigenvalue of 1 as the cutoff. Multivariate analysis was checked for spatial 

autocorrelation using a distance-based Moran's Eigenvector Maps, which found no statistically 

significant spatial structures in the data, so scaling factors were not included.  

For RDA, carnivore community data were Hellinger transformed and modeled in response to 

environmental covariates (elevation, slope, and distance to villages, roads, streams, and 

plantations) that were binned into three equal bins and included as factors in the RDA.   

Additionally, detection days for the camera trap mammal detections were summed across orders 

(Cetartiodactyl, Eulipotyphla, Perissodactyla, Pholidota, primates, Proboscidea, Rodentia, 

Scandentia) and included for additional exploration of the data. A global test of the RDA was run 

for 1000 permutations to determine model significance (α=0.05). Then, forward selection was 

used to identify the explanatory variables with the highest R2 for subsequent model refitting. The 

VEGAN package in program R version 3.6.1 was used to generate PCA and RDA results and 

plots(Oksanen et al., 2019).  

Family Genus Species Common name 

Felidae Catopuma temminckii Asiatic Golden Cat 
Herpestidae Herpestes semitorquatus Collard Mongoose 
Mustelidae Lutra sumatrana Hairy Nosed Otter 
Mustelidae Lutrogale perspicillata Smooth-coated otter 

Mustelidae Martes flavigula Yellow-throated marten 
Mustelidae Mustela nudipes Malayan weasel 
Viverridae Viverra tangalunga Malayan civet 
Felidae Prionailurus  planiceps Flat-headed cat 

 

 



73 | Journal of Wildlife and Biodiversity 5(3): 68-88 (2021) 

 

Multi-Species Occupancy Model (MSOM) 

Community-level occupancy models involve predicting species community composition as a 

function of environmental covariates while accounting for imperfect detection ( Dorazio et al., 

2006; Dorazio and Royle, 2005; Broms et al., 2016).  Models attempting to fit multispecies 

occupancy have used a multivariate Bernoulli random variable as the latent occupancy state to 

provide conditions for interspecific independence and account for imperfect detection (Rota et al., 

2016).    Hierarchical models for communities include a super-community concept with nested 

levels of single species occurrences. 

This model estimates the species-specific occupancy and site-specific species richness by 

incorporating data augmented from potential species in the species pool. Extending the single 

species single-season model with an index for each species as the latent variable, then the 

underlying distribution is a hyperparameter for the entire carnivore community augmented with 

all 0's (Kery and Royle, 2016). The MSOM was fit for eighteen species in the species pool that 

were detected in 2010-2016. For example, the smallest scale of MSOM modeled, utilizing the 

scale of each detection day, for any given year, then there were between four to eight species 

detected. The remainder from the original 18 species pool was then augmented into the detection 

array (Table 4).  

 

Table 4.  Number of carnivores and detections within each year and block out of the species pool of 

eighteen species 

Year Block 1 

(April – 

May) 

# Carnivores 

Detections Block 2 

(June – July)  

# Carnivores 

Detections Total 

Carnivores 

Per year 

Total 

Detections 

Per year 

2010 4 7 7 12 9 19 
2011 4 5 8 22 9 27 
2012 5 8 6 13 7 21 
2013 4 9 3 3 6 12 
2014 5 9 8 14 10 23 
2015 7 16 2 3 7 19 
2016 5 10 4 4 6 14 

 

For the first set of models, we assumed a closed community for each block subset for every two-

month survey period (May-April, June-July) for over seven years resulting in 14 models. For the 

second set of models, we included a block effect to distinguish block 1 from block 2, and 

considered every four-month survey period (May-July) as a closed community resulting in a 

yearly model for 7 models. The scale of the analysis was the 2km2 grid camera trap survey units 

within the larger sampling area. We modeled the detection probabilities as a function of the year 

(Julian date) to account for the detection differences. We also included a third set of models for a 

broader scale MSOM in the analysis utilizing the block effects and further collating detection 

days into months with all of the years of data in one model. In models that were run, including all 

years of data, separate covariates were fit to model each year's effects. These three MSOM 
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temporals and spatial scales demonstrate whether the models fit better at broader scales in the 

MSOM framework.  

Camera trapping detection records (presence/absence) for all species collected in a combined 

array of each species from each season were used as the response variable. The analyses were 

hypothesized to be affected by environmental variables (distance to streams, elevation, and slope) 

and anthropogenic variables (distance to the villages, plantations, or roads).  

In this dataset, the point occurrences were modeled as a Bernoulli distribution, where occupancy 

(ψ) is the probability that a species, I, occurred at site j during survey k.  

Superpopulation process          

  𝑤𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛺)  

State process (occurrence)        

 𝑧𝑖𝑘|𝑤𝑘~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑤𝑘𝜓𝑘) 

Observation process (detection)    

 𝑦𝑖𝑘|𝑧𝑖𝑘~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑧𝑖𝑘𝑝𝑖𝑗𝑘) 

Model for two-month subset for either block 1 or block 2:   

 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖𝑘) = 𝑙𝑝𝑠𝑖𝑘 + 𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖1 ∗ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒1 +  𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖2 ∗ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒2  

For models with block effects for four-month modeling including both blocks: 

 𝑙𝑜𝑔𝑖𝑡(𝜓𝑖𝑘) = 𝑙𝑝𝑠𝑖𝑘 + 𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖1 ∗ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒1 +  𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖2 ∗ 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒2 + 𝑏𝑙𝑜𝑐𝑘 𝑒𝑓𝑓𝑒𝑐𝑡𝑠  

Priors and Hyperpriors: 

𝑙𝑝𝑠𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖 ,  𝜎𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖
2 )  

𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖 ,  𝜎𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖
2 )  

𝜇𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖~𝑁𝑜𝑟𝑚𝑎𝑙(0,  0.1) 

𝜎𝑏𝑒𝑡𝑎𝑙𝑝𝑠𝑖
2 ~𝑁𝑜𝑟𝑚𝑎𝑙(0,  1) 

 

Model for detection 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘) = 𝑙𝑝 + 𝑏𝑒𝑡𝑎𝑝1 ∗ 𝑑𝑎𝑡𝑒 

For models that included all years of data: 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑘) = 𝑙𝑝 + 𝑏𝑒𝑡𝑎𝑝1 ∗ 𝑋. 2010 + 𝑏𝑒𝑡𝑎𝑝2 ∗ 𝑋. 2011 + 𝑏𝑒𝑡𝑎𝑝3 ∗ 𝑋. 2012 + 𝑏𝑒𝑡𝑎𝑝4

∗ 𝑋. 2013 + 𝑏𝑒𝑡𝑎𝑝5 ∗ 𝑋. 2015 + 𝑏𝑒𝑡𝑎𝑝6 ∗ 𝑋. 2016 

Priors and Hyperpriors: 

𝑙𝑝~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏𝑒𝑡𝑎𝑙𝑝,  𝜎𝑏𝑒𝑡𝑎𝑙𝑝
2 )  

𝑏𝑒𝑡𝑎𝑙𝑝𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏𝑒𝑡𝑎𝑙𝑝,  𝜎𝑏𝑒𝑡𝑎𝑙𝑝
2 ) 

𝜇𝑏𝑒𝑡𝑎𝑙𝑝~𝑁𝑜𝑟𝑚𝑎𝑙(0,0.1) 



75 | Journal of Wildlife and Biodiversity 5(3): 68-88 (2021) 

 

𝜎𝑏𝑒𝑡𝑎𝑙𝑝
2 ~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) 

 

Where 𝛽0 is the intercept term for occurrence probabilities, and betas are to proximity to 

plantation or village and elevation. Detection probability (𝑝𝑖,𝑗) uses alpha to parameterize the 

Julian date and effects on species detectability. This study used jagsUI packages in R for a 

Bayesian approach to MSOM (Kellner, 2019). We used non-informative priors and ran three 

chains for 6000 iterations, burning 2000 and thinning 10. The convergence of the models was 

assessed by having an R-hat of <1.1 was acceptable. 

 

Bayesian Model Selection 

Bayesian model selection methods include techniques of cross-validation, information criteria, or 

Bayesian model averaging (Hooten & Hobbs, 2015). Model selection and validation have been 

challenging for Bayesian MSOM for numerous reasons. For example, measures of information 

criteria, like AIC and BIC, are not suitable for models with latent variables. Broms et al. (2016) 

designed a series of methods suitable for MSOM, and model selection was developed using the 

log pointwise predictive density (lppd), Watanabe-Akaike information criterion (WAIC), and 

Conditional Predictive Ordinate Criterion (CPO) for between model selection. Generating AUC 

metrics from cross-validation runs has become accepted as an appropriate model evaluation 

technique (Zipkin et al., 2012). Additional metrics like the Briers log have given additional 

evaluation ability for MSOM models (Broms et al., 2016). These methods can validate and 

evaluate MSOM models for camera trapping data and accompanying covariate information. 

Although few studies employ MSOM for carnivore camera trapping data, these methods are not 

well employed for the community-level response to environmental covariates. Here we use the 

methods as outlined above, in Broms (2016), for model selection (lppd, pD, WAIC, CPO) and 

evaluation (deviance, AUC, Briers log) from k-fold cross validation using 25% testing data to 

qualify which model fits the best using multiple metrics.  

 

Results 

Principal Components Analysis 

The PCA revealed the distribution of the 60 camera trap sites within the six environmental 

covariates' hyperspace. Camera traps that had detected at least one carnivore were a subset (n=44) 

for comparison after comparing the PCA for the 60 total stations (Fig 2a) vs. 44 carnivore stations 

(Fig 2b).  

The covariate space appears polarized and distinct between areas of heavier anthropogenic 

disturbance and areas with a natural environment (Fig. 3). The principal components 1 and 2 were 

able to explain 74% of the covariates' variation (Table 5).  
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(a)  

 

(b)  

Figure 2. PCA biplot of TEAM network camera trap data  (n=60) in Bukit Barisan Selatan NP 

with six environmental covariates (a), PCA biplot of camera trap data (n=44) detected at least one 

carnivore in Bukit Barisan Selatan NP with six environmental covariates (b) 

 

Table 5. Two significant principal components were determined by scree plots, accounting for a 

cumulative proportion of 74% of the environmental covariate dataset variance.  

 PC1 PC2 
Standard deviation 1.8219 1.0667 
Proportion of Variance 0.5532 0.1896 
Cumulative Proportion   0.5532 0.7428 

 

PCA results indicate that within the subspace of environmental variability, distances to roads and 

plantations were particularly pronounced among the camera trap sites (Fig. 4).  
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a. b.  

Figure 4. PCA plots for the six feature environmental covariate feature space results, revealing 

differentiation among areas of low medium and high distance to a. plantations and b. roads. 

 

Redundancy Analysis 

Forward selection of the RDA indicated three significant variables (distance to roads, villages, 

and plantations). These results were confirmed using a permutation test on the RDA (Table 6), 

which found the distance to roads, villages, and plantations model significant (p-value 0.028). 

Permutation results indicated 6 RDA axes with one significant as determined by ANOVA and 16 

PCA axes. Variance inflation factors (VIF) were checked to determine collinearity using a 

threshold of 7, and none of the model variables were found to be strongly correlated. These RDA 

results confirm that proximity to human disturbances such as roads, villages, and plantations 

affects the number of detections of carnivores (Fig. 5).  

 

Figure 5. Statistically significant RDA results indicated that Hellinger transformed species richness of 

carnivore detections in response to distance to roads, villages, and plantations model. Areas are shaded to 

denote low, medium, and high numbers of detections of carnivores 
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Further results showed that the environmental variables accounted for roughly 15% of the 

constrained variation, leaving approx 85% of the variation unexplained (Table 7).  The first RDA 

coefficients indicate that the carnivore community preferred areas of high distance to roads and 

plantations and medium distance from villages.  

 

Table 6. Results from the RDA of carnivore community data and anthropogenic covariates (distance to 

roads, plantations, and villages) 

Model Covariates Df Variance F Pr(>F) 

Full 
Elevation, slope, distance to roads, villages, 

streams and plantations 
6 0.09116 0.8436 0.744 

Anthropogenic Distance to roads, villages, and plantations 6   0.14772  1.4939   0.028 * 

Natural  Elevation, slope, distance to streams 6 0.09116 0.8436 0.736 

 

Table 7. Significance of RDA and the proportion of constrained and unconstrained variation in the data. 

 Inertia  Proportion 

Total 0.65084 1.0000 

Constrained 0.09789 0.1504 

Unconstrained 0.55295   0.8496 

 

Further RDA results for the sum of detection days across orders indicate a niche space within the 

wider mammal community that the carnivores inhabit. Notably, the species richness of carnivores 

was significantly correlated with higher detections of the species in orders Cetartiodactyl (even-

toed ungulate), Perissodactyla (odd-toed ungulate), and fewer detections of Proboscidea 

(elephants), as confirmed by ANOVA with a model significance (p=0.028) (Fig 6). 

 

Figure 6. Statistically significant RDA results indicated that Hellinger transformed species richness with 

detection day counts of mammal species in various orders (Proboscidea, Perissodactyla, Cetartiodactyla). 

With areas shaded for low, medium, and high numbers of carnivore detections. 
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Results from the exploratory analysis indicate from PCA that camera trap sites that detected 

carnivores show a distinct difference between anthropogenic covariates and natural covariates.  

Furthermore, the anthropogenic covariates for distance to roads, villages, and plantations are 

significant to this carnivore community (p-value 0.028), explaining 15% of the data are 

constrained variation.  

 

Single Subset Occupancy Modeling  

Results from the first set of models run for each subset (Block 1 (April-May), Block 2 (June-July) 

indicate that the models utilizing covariate information performed better than the null model 

(Supp. Table 7a and 7b). Overall, 14 seasons were used in this analysis. Model selection using 

deviance, lppd, pD, WAIC, CPO confirmed the best model among the total, anthropogenic, 

natural, and null models. In four of the seasons (28%), the full covariate model was the best fit, 

four of the seasons (28%), the anthropogenic model was the best fit,  four of the seasons (28%), 

the natural model was the best fit, and two of the seasons (14%) the null model was the best fit. 

This indicates that covariate information helped predict the carnivore community more than the 

null model. Model evaluation using Deviance, AUC, and Brier was used to confirm whether the 

models fit the data. Sparse camera trapping datasets were shown to perform adequately with 

enough carnivore detections. Several models fit the data with AUC scores lower than 0.5, 

meaning the model can be considered complete random noise. Ten models had AUC scores 

higher than 0.5, indicating these models fit the model better than non-random during the cross-

validation runs (Full (3), Anthro(3), Natural (2), Null (2)) (Supp. Table 8). However, the model 

results for those that fit marginally well showed different mean covariate responses for each year 

and season (Supp. Table 9). Our hypothesis that there will be covariate effects on the community 

as a whole was confirmed. However, the estimates of covariates between years were not 

consistent. Furthermore, none of the models had an AUC > 0.7, indicating the models overall did 

not fit very well.  Species richness distribution maps were generated from the outputs (Fig 7), 

which show the projected species richness outputs onto the landscape, further illustrating the 

models' inconsistency to find a niche subspace within the study area carnivore species richness 

may be higher or lower between years. 

 

Block Design Occupancy Modeling  

The block-design models that included a block effect within the model (May-July) were run for 

each year of the study. The model selection procedures showed that the full model outperformed 

all other models, with five out of the seven years (71%) having better selection metrics for the full 

model (Supp. Table 10). However, the models were shown through model evaluation metrics and 

k-fold cross-validation not to perform better than random with AUC ~ 0.5 (Supp. Table 11). 

These results indicate the block-effects while allowing for a more extensive inclusion of surveys 

between May and July, did not improve the ability of MSOM to estimate covariate effects.    
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Figure 7. Carnivore species richness outputs and projection onto the landscape for the years that had an 

AUC > 0. 5. 

 

Broad Scale Occupancy Modeling  

The block design models that had collated monthly data across years were assessed as the 

anthropogenic model performing best (Supp. Table 12). However, the AUC ~ 0.5 revealed these 

results to be no better than random (Supp. Table 13). 
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Discussion 

The results from the RDA were conclusive for anthropogenic effects on the carnivore community. 

The RDA produced significant results with the broad-scale exploratory techniques not confirmed 

by local scale MSOM with imperfect detection. The hierarchical Bayesian MSOM was only 

marginally able to detect any covariability for species richness and the environmental variables at 

the smallest scale modeled, which used every survey day, no block effects, and each year 

separately. The MSOM was inconclusive at larger temporal scales when block effects were added 

and when data were collated to each month within every year in one model. Of the MSOM 

models for the smallest scale of data, results were not consistent across years, showing a mix of 

full, anthropogenic, natural, and null models. Furthermore, even models with the best model 

selection and evaluation did not have model estimates that were similar for covariates, indicating 

that MSOM techniques at the local scale did not best represent these data. To illustrate these 

inconsistencies, the models were plotted to show potential landscape-scale species richness 

hotspots.  

Additional analyses indicated that small variation in the RDA was significant for carnivore 

species richness described by a niche space of taxonomic orders. Higher numbers of 

Cetartiodactyla and Perissodactyla indicated higher numbers of carnivores and a marginal 

distance from Proboscidea. These results indicate that a small amount of variation in the data is 

likely to co-occurring ungulate species in areas where there is a higher number of carnivores.  

The scale of analysis between RDA and MSOM was a topic of concern for this study, as the RDA 

collates all data across years, producing one column of species counts at each site across the 

seven years of the study, whereas the MSOM was modeled at different temporal scales using the 

entire survey of detection days or month and also accounting for imperfect detection. 

Furthermore, the RDA used factored variables for distance to roads, plantation, and village as 

significant, revealing that factoring variables into broader categories helped detect significant 

variables correlated with carnivore species richness.  

Previous carnivore studies have performed occupancy modeling, either single season or multi-

season single species models on individual carnivores, revealing occupancy patterns and niche 

partitioning when exposed to anthropogenic pressures (Lantschner et al., 2012; Pettorelli et al., 

2010; Rich et al., 2017; Schuette et al., 2013; Van der Weyde et al., 2018). For example, Schuette 

(2013) showed through individual-species models that distance to human settlements and land 

uses were shown in Kenya to affect 83% of African carnivores' species in their study area. A 

unique combination of environmental variables was shown to influence occupancy patterns for 

each carnivore studied (Schuette et al., 2013). Globally, many mammalian carnivores exist in 

areas of high spatial overlap or significant spatial avoidance, resulting in carnivore co-

occurrences, where resource availability is potentially similar (Davis et al., 2018). Other studies 

have attempted to estimate the carnivore community's structure, using density estimates derived 

from spatial capture-recapture models that are spatially-explicit, to understand space use and 

interspecific interactions (Jiménez et al., 2017).  Previous studies on the carnivore community in 

Bukit Barisan Selatan National Park (BBSNP) have shown that many carnivores have temporal 

overlap or non-overlap of their busy times of day, indicating felid sympatry (Allen et al., 2020). 

Through quantitative analysis, these carnivore studies have shown that there are carnivore 

community organizations and niche overlap in areas of shared resource use.  
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Other studies have sought to understand community-level covariate effects using MSOM (Boron 

et al., 2019; Cavada et al., 2019; Dechner et al., 2018; Rovero et al., 2014) using the Bayesian 

Credible Interval (BCI) or Bayesian p-value to understand whether the model fit. However, 

methods and metrics for performing model selection (Broms et al., 2016) and evaluation (Zipkin 

et al., 2012) have developed slowly alongside these multispecies models. Here, we were able to 

provide several model selection (lppd, pD, waic, CPO) and evaluation metrics (deviance, AUC, 

briers log) (Broms et al., 2016) for our models to confirm that these MSOM models only 

marginally fit the data. The models that had AUC better than random included several subsets 

within the most local scale models, although when projected onto the landscape, it also revealed 

no distinct patterns between seasons and the model estimates showed no consistency between 

subsets and seasons.  

This study was unable to make definitive conclusions using community-level data and MSOM, 

which accounts for imperfect detection in a more robust modeling framework to include rare 

species into the analysis. Using a broad scale of analysis for RDA was more successful, likely 

because the number of individual carnivore detections was low, so collating the detections across 

years and further binning the covariates into factors was the best way to analyze carnivore data 

from this dataset. The comparison between MSOM and RDA has been addressed by Yamaura et 

al. (2019), who concluded that they are beneficial depending on the application. One significant 

difference in the modeling techniques presented in this work that RDA does not include imperfect 

detection and is therefore not making any inferences about occupancy, only detection. We can say 

that we detected higher numbers of carnivores at sites with greater distances from plantations and 

roads, and medium distances from villages, although this does not estimate occupancy or species 

richness that we can project onto the landscape along with covariate estimates. The MSOM did 

include imperfect detection and was not able to find a consistent correlation between the 

covariates between years or produce results that are considered genuinely robust (AUC > 0.7), 

only marginally better than random (AUC > 0.5). These methods can be more beneficial for 

larger datasets where the frequency of detection is higher, and the covariate effects are more 

pronounced, such as a multi-regional study that has shown a much better ability to fit the data 

(Sutherland et al., 2016). An extension of this study may attempt the same workflow utilizing 

camera grids from across the state of Sumatra to produce a broader range heterogeneity.  In this 

study, we sought to use sparse carnivore detections that are a product of surveying carnivores that 

are wide-ranging and difficult to detect. Furthermore, between years the number of cameras was 

not consistent, with some years having only 30 or 40 cameras and other years having 60 cameras, 

which means that imputing the data may have been able to help with these inconsistencies.  

Large-scale camera trapping data are only now surfacing for public use or in private database 

repositories that can enable more synergistic research. Large area camera trapping networks have 

been implemented in order to address questions about mammal distributions at a landscape scale 

(McShea et al., 2016), and multiple groups such as GBIF, GEO BON, eMammal, TEAM network 

are working towards global camera trapping coverage for generating biodiversity data for 

terrestrial mammal assemblages (Steenweg et al., 2017). In combination with environmental data 

from repositories such as Google Earth Engine, MSOM approaches can help understand how 

communities use the landscape in response to anthropogenic disturbances. As these data are 
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generated, then analysis projects like this may be applied to larger projects with more 

differentiation from which to model, making landscape-scale patterns easier to detect.  

The implications of looking at broader scales for patterns using RDA that otherwise would not be 

detectable using MSOM are significant. The results demonstrate the large-scale detectability 

patterns for carnivore species that otherwise were not apparent from running MSOM. While there 

are many implications to not including imperfect detection into the analysis and collating data 

across years for one response column of data, it appears in this study that any patterns in species 

richness that was to be detected were only available at larger scales. This also indicates that the 

data for MSOM may require much larger samples across a larger area to perform adequately at 

the small temporal scales that it operates and including imperfect detection.  

 

Conclusions 

The analysis presented in this paper utilizes redundancy analysis (RDA) and multispecies 

occupancy (MSOM) as an exploratory analysis to determine covariate effects on the carnivore 

community. The exploratory data analysis RDA showed significant results with anthropogenic 

covariates for high distance to roads and plantations and medium distance to villages with higher 

carnivore detections. MSOM was intended to model species richness on the landscape given 

covariates. However, the results were not consistent. Despite the low detection frequency of many 

species in the study, this camera trapping study enabled us to include these rare carnivores and 

imperfect detection into our species richness models. The model selection log pointwise 

predictive density (lppd), Watanabe-Akaike information criterion (WAIC) and Conditional 

Predictive Ordinate Criterion (CPO), and evaluation metrics (Deviance, Area under Curve (AUC) 

and Brier's Log) assisted in further understanding the effect of covariate information on the 

carnivore community as a whole. MSOM was unable to make definitive conclusions about the 

carnivore community across various spatial and temporal scales, as the models that produced 

marginal significance had covariate estimates that were not consistently positive or negative 

between years. The results indicate that species richness patterns were detectable across large 

spatial and temporal scales using the RDA after collating all detections across seven years and 

binning covariates, whereas finer temporal scales using the MSOM for survey days and months 

and including imperfect detection were unable to make meaningful conclusions.  

Acknowledgments: We are grateful to the TEAM network and William McCarthy to freely 

download the camera trap data from Bukit Barisan Selatan NP. Thank you to FiBER and the 

Center for Landscape Conservation Planning to support dissertation research and graduate 

teaching assistantship. Special thanks to reviewers for taking the time to comment. This work was 

supported by the Florida Institute for Built Environment Resilience and the University of Florida, 

Gainesville, FL.  

 

References 

Allen, M. L., Sibarani, M. C., Utoyo, L., & Krofel, M. (2020). Terrestrial mammal community 

richness and temporal overlap between tigers and other carnivores in Bukit Barisan 



84 | Journal of Wildlife and Biodiversity 5 (3): 68-88 (2021) 

Selatan National Park, Sumatra. Animal Biodiversity and Conservation, 97–107. 

https://doi.org/10.32800/abc.2020.43.0097 

Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R. Springer. 

Boron, V., Deere, N. J., Xofis, P., Link, A., Quiñones-Guerrero, A., Payan, E., & Tzanopoulos, J. 

(2019). Richness, diversity, and factors influencing occupancy of mammal communities 

across human-modified landscapes in Colombia. Biological Conservation, 232, 108–116. 

https://doi.org/10.1016/j.biocon.2019.01.030 

Broms, K. M., Hooten, M. B., & Fitzpatrick, R. M. (2016). Model selection and assessment for 

multispecies occupancy models. Ecology, 97(7), 1759–1770. https://doi.org/10.1890/15-

1471.1 

Cavada, N., Worsøe Havmøller, R., Scharff, N., & Rovero, F. (2019). A landscape-scale 

assessment of tropical mammals reveals the effects of habitat and anthropogenic 

disturbance on community occupancy. PLOS ONE, 14(4), e0215682. 

https://doi.org/10.1371/journal.pone.0215682 

Davis, C. L., Rich, L. N., Farris, Z. J., Kelly, M. J., Di Bitetti, M. S., Blanco, Y. D., Albanesi, S., 

Farhadinia, M. S., Gholikhani, N., Hamel, S., Harmsen, B. J., Wultsch, C., Kane, M. D., 

Martins, Q., Murphy, A. J., Steenweg, R., Sunarto, S., Taktehrani, A., Thapa, K., … 

Miller, D. A. W. (2018). Ecological correlates of the spatial co-occurrence of sympatric 

mammalian carnivores worldwide. Ecology Letters, 21(9), 1401–1412. 

https://doi.org/10.1111/ele.13124 

Dechner, A., Flesher, K. M., Lindell, C., Vega de Oliveira, T., & Maurer, B. A. (2018). 

Determining carnivore habitat use in a rubber/forest landscape in Brazil using 

multispecies occupancy models. PLOS ONE, 13(4), e0195311. 

https://doi.org/10.1371/journal.pone.0195311 

Dorazio, R. M., & Royle, J. A. (2005). Estimating Size and Composition of Biological 

Communities by Modeling the Occurrence of Species. Journal of the American Statistical 

Association, 100(470), 389–398. https://doi.org/10.1198/016214505000000015 

Dray, S., Pélissier, R., Couteron, P., Fortin, M.-J., Legendre, P., Peres-Neto, P. R., Bellier, E., 

Bivand, R., Blanchet, F. G., De Cáceres, M., Dufour, A.-B., Heegaard, E., Jombart, T., 

Munoz, F., Oksanen, J., Thioulouse, J., & Wagner, H. H. (2012). Community ecology in 

the age of multivariate multiscale spatial analysis. Ecological Monographs, 82(3), 257–

275. https://doi.org/10.1890/11-1183.1 

Easter, T., Bouley, P., & Carter, N. (2019). Opportunities for biodiversity conservation outside of 

Gorongosa National Park, Mozambique: A multispecies approach. Biological 

Conservation, 232, 217–227. https://doi.org/10.1016/j.biocon.2019.02.007 

Gibson, L., Lee, T. M., Koh, L. P., Brook, B. W., Gardner, T. A., Barlow, J., Peres, C. A., 

Bradshaw, C. J. A., Laurance, W. F., Lovejoy, T. E., & Sodhi, N. S. (2011). Primary 

forests are irreplaceable for sustaining tropical biodiversity. Nature, 478(7369), 378–381. 

https://doi.org/10.1038/nature10425 

Goijman, A. P., Conroy, Michael. J., Bernardos, J. N., & Zaccagnini, M. E. (2015). Multi-Season 

Regional Analysis of Multi-Species Occupancy: Implications for Bird Conservation in 



85 | Journal of Wildlife and Biodiversity 5(3): 68-88 (2021) 

 

Agricultural Lands in East-Central Argentina. PLOS ONE, 10(6), e0130874. 

https://doi.org/10.1371/journal.pone.0130874 

Hooten, M. B., & Hobbs, N. T. (2015). A guide to Bayesian model selection for ecologists. 

Ecological Monographs, 85(1), 3–28. https://doi.org/10.1890/14-0661.1 

Jaya, I. N. S., Wijanarto, A. B., & Wibisono, H. T. (n.d.). Deforestation and it is Implications for 

Sumatran tigers in Bukit Barisan Selatan National Park, Sumatra (Deforestasi dan 

Implikasinya terhadap Populasi Harimau Sumatra di Taman Nasional Bukit Barisan 

Selatan, Sumatra). 9. 

Jiménez, J., Nuñez-Arjona, J. C., Rueda, C., González, L. M., García-Domínguez, F., Muñoz-

Igualada, J., & López-Bao, J. V. (2017). Estimating carnivore community structures. 

Scientific Reports, 7(1), 41036. https://doi.org/10.1038/srep41036 

Kellner, K. (2019). Package "jagsUI." CRAN Repository. 

Korkmaz, S., Goksulul, D., & Zararsiz, G. (2019). Package 'MVN: Multivariate Normality Tests". 

CRAN Repository. 

Lantschner, M. V., Rusch, V., & Hayes, J. P. (2012). Habitat use by carnivores at different spatial 

scales in a plantation forest landscape in Patagonia, Argentina. Forest Ecology and 

Management, 269, 271–278. https://doi.org/10.1016/j.foreco.2011.12.045 

Laurance, W. F., Sayer, J., & Cassman, K. G. (2014). Agricultural expansion and its impacts on 

tropical nature. Trends in Ecology & Evolution, 29(2), 107–116. 

https://doi.org/10.1016/j.tree.2013.12.001 

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Andrew Royle, J., & Langtimm, C. 

A. (2002). Estimating site occupancy rates when detection probabilities are less than one. 

Ecology, 83(8), 2248–2255. https://doi.org/10.1890/0012-

9658(2002)083[2248:ESORWD]2.0.CO;2 

McCarthy, J. L., Wibisono, H. T., McCarthy, K. P., Fuller, T. K., & Andayani, N. (2015). 

Assessing the distribution and habitat use of four felid species in Bukit Barisan Selatan 

National Park, Sumatra, Indonesia. Global Ecology and Conservation, 3, 210–221. 

https://doi.org/10.1016/j.gecco.2014.11.009 

McShea, W. J., Forrester, T., Costello, R., He, Z., & Kays, R. (2016). Volunteer-run cameras as 

distributed sensors for macrosystem mammal research. Landscape Ecology, 31(1), 55–66. 

https://doi.org/10.1007/s10980-015-0262-9 

Moore, J. F., Mulindahabi, F., Masozera, M. K., Nichols, J. D., Hines, J. E., Turikunkiko, E., & 

Oli, M. K. (2018). Are ranger patrols effective in reducing poaching-related threats 

within protected areas? Journal of Applied Ecology, 55(1), 99–107. 

https://doi.org/10.1111/1365-2664.12965 

O'Brien, T. G., & Kinnaird, M. F. (1996). Birds and mammals of the Bukit Barisan Selatan 

National Park, Sumatra, Indonesia. Oryx, 30(3), 207–217. 

https://doi.org/10.1017/S0030605300021657 



86 | Journal of Wildlife and Biodiversity 5 (3): 68-88 (2021) 

O'Brien, T. G., Kinnaird, M. F., & Wibisono, H. T. (2003). Crouching tigers, hidden prey: 

Sumatran tiger and prey populations in a tropical forest landscape. Animal Conservation, 

6(2), 131–139. https://doi.org/10.1017/S1367943003003172 

Oksanen, J., Guillaume Blanchet, F., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, 

P., O'Hara, R. B., Simpson, G., Solymos, P., Stevens, H., Szoecs, E., & Wagner, H. 

(2019). Package "vegan." CRAN Repository. 

Ovaskainen, O., Abrego, N., Halme, P., & Dunson, D. (2016). Using latent variable models to 

identify large networks of species-to-species associations at different spatial scales. 

Methods in Ecology and Evolution, 7(5), 549–555. https://doi.org/10.1111/2041-

210X.12501 

Pacifici, K., Zipkin, E. F., Collazo, J. A., Irizarry, J. I., & DeWan, A. (2014). Guidelines for a 

priori grouping of species in hierarchical community models. Ecology and Evolution, 

4(7), 877–888. https://doi.org/10.1002/ece3.976 

Pettorelli, N., Lobora, A. L., Msuha, M. J., Foley, C., & Durant, S. M. (2010). Carnivore 

biodiversity in Tanzania: Revealing the distribution patterns of secretive mammals using 

camera traps. Animal Conservation, 13(2), 131–139. https://doi.org/10.1111/j.1469-

1795.2009.00309.x 

Pusparini, W., Batubara, T., Surahmat, F., Ardiantiono, Sugiharti, T., Muslich, M., Amama, F., 

Marthy, W., & Andayani, N. (2018). A pathway to recovery: The Critically Endangered 

Sumatran tiger Panthera tigris sumatrae in an 'in danger' UNESCO World Heritage Site. 

Oryx, 52(1), 25–34. https://doi.org/10.1017/S0030605317001144 

Rao, C. R. (1964). The Use and Interpretation of Principal Component Analysis in Applied 

Research. 31. 

Rezaei, S., Mohammadi, A., Cushman, S. A., Bencini, R., Rooney, T., & Naderi, M. (2021). 

Landscape connectivity for two sympatric carnivores in central Iran [Preprint]. Preprints. 

https://doi.org/10.22541/au.161153950.09782632/v1 

Rich, L. N., Miller, D. A. W., Robinson, H. S., McNutt, J. W., & Kelly, M. J. (2017). Carnivore 

distributions in Botswana are shaped by resource availability and intraguild species. 

Journal of Zoology, 303(2), 90–98. https://doi.org/10.1111/jzo.12470 

Ripple, W. J., Chapron, G., López-Bao, J. V., Durant, S. M., Macdonald, D. W., Lindsey, P. A., 

Bennett, E. L., Beschta, R. L., Bruskotter, J. T., Campos-Arceiz, A., Corlett, R. T., 

Darimont, C. T., Dickman, A. J., Dirzo, R., Dublin, H. T., Estes, J. A., Everatt, K. T., 

Galetti, M., Goswami, V. R., … Zhang, L. (2016). Saving the World's Terrestrial 

Megafauna. BioScience, 66(10), 807–812. https://doi.org/10.1093/biosci/biw092 

Ripple, W. J., Wolf, C., Newsome, T. M., Hoffmann, M., Wirsing, A. J., & McCauley, D. J. 

(2017). Extinction risk is most acute for the world's largest and smallest vertebrates. 

Proceedings of the National Academy of Sciences, 114(40), 10678–10683. 

https://doi.org/10.1073/pnas.1702078114 

Rodrigues, A. S., Brooks, T. M., Butchart, S. H., Chanson, J., Cox, N., Hoffmann, M., & Stuart, S. 

N. (2014). Spatially explicit trends in the global conservation status of vertebrates. PLoS 

One, 9(11), e113934. 



87 | Journal of Wildlife and Biodiversity 5(3): 68-88 (2021) 

 

Rota, C. T., Wikle, C. K., Kays, R. W., Forrester, T. D., McShea, W. J., Parsons, A. W., & 

Millspaugh, J. J. (2016). A two-species occupancy model accommodating simultaneous 

spatial and interspecific dependence. Ecology, 97(1), 48–53. 

Rovero, F., Martin, E., Rosa, M., Ahumada, J. A., & Spitale, D. (2014). Estimating Species 

Richness and Modelling Habitat Preferences of Tropical Forest Mammals from Camera 

Trap Data. PLoS ONE, 9(7), e103300. https://doi.org/10.1371/journal.pone.0103300 

Schuette, P., Wagner, A. P., Wagner, M. E., & Creel, S. (2013). Occupancy patterns and niche 

partitioning within a diverse carnivore community exposed to anthropogenic pressures. 

Biological Conservation, 158, 301–312. https://doi.org/10.1016/j.biocon.2012.08.008 

Steenweg, R., Hebblewhite, M., Kays, R., Ahumada, J., Fisher, J. T., Burton, C., Townsend, S. E., 

Carbone, C., Rowcliffe, J. M., Whittington, J., Brodie, J., Royle, J. A., Switalski, A., 

Clevenger, A. P., Heim, N., & Rich, L. N. (2017). Scaling-up camera traps: Monitoring 

the planet's biodiversity with networks of remote sensors. Frontiers in Ecology and the 

Environment, 15(1), 26–34. https://doi.org/10.1002/fee.1448 

Sutherland, C., Brambilla, M., Pedrini, P., & Tenan, S. (2016). A multi-region community model 

for inference about geographic variation in species richness. Methods in Ecology and 

Evolution, 7(7), 783–791. https://doi.org/10.1111/2041-210X.12536 

Van der Weyde, L. K., Mbisana, C., & Klein, R. (2018). Multispecies occupancy modeling of a 

carnivore guild in wildlife management areas in the Kalahari. Biological Conservation, 

220, 21–28. https://doi.org/10.1016/j.biocon.2018.01.033 

Wearn, O. R., Carbone, C., Rowcliffe, J. M., Pfeifer, M., Bernard, H., & Ewers, R. M. (2019). 

Land-use change alters the mechanisms assembling rainforest mammal communities in 

Borneo. Journal of Animal Ecology, 88(1), 125–137. https://doi.org/10.1111/1365-

2656.12903 

Wearn, O. R., Rowcliffe, J. M., Carbone, C., Pfeifer, M., Bernard, H., & Ewers, R. M. (2017). 

Mammalian species abundance across a gradient of tropical land-use intensity: A 

hierarchical multispecies modeling approach. Biological Conservation, 212, 162–171. 

https://doi.org/10.1016/j.biocon.2017.05.007 

Yamaura, Y., Blanchet, F. G., & Higa, M. (2019). Analyzing community structure subject to 

incomplete sampling: Hierarchical community model vs. canonical ordinations. Ecology, 

100(8). https://doi.org/10.1002/ecy.2759 

Zipkin, E. F., Andrew Royle, J., Dawson, D. K., & Bates, S. (2010). Multispecies occurrence 

models to evaluate the effects of conservation and management actions. Biological 

Conservation, 143(2), 479–484. https://doi.org/10.1016/j.biocon.2009.11.016 

Zipkin, E. F., DeWan, A., & Andrew Royle, J. (2009). Impacts of forest fragmentation on species 

richness: A hierarchical approach to community modelling. Journal of Applied Ecology, 

46(4), 815–822. https://doi.org/10.1111/j.1365-2664.2009.01664.x 

Zipkin, E. F., Grant, E. H. C., & Fagan, W. F. (2012). Evaluating the predictive abilities of 

community occupancy models using AUC while accounting for imperfect detection. 

Ecological Applications, 22(7), 1962–1972. https://doi.org/10.1890/11-1936.1 


