Could bats be a good tool for monitoring highly fragmented and endangered forest habitats?
DOI:
https://doi.org/10.5281/zenodo.18118296Keywords:
Habitat fragmentation, bats, ringing-based monitoring, forest bioindicators, Oriental Sweetgum forestsAbstract
Habitat parçalanması, özellikle yerel ve endemik orman habitatları olmak üzere karasal ekosistemler için giderek artan bir endişe kaynağıdır. Parçalanma, ada biyocoğrafyası prensipleri doğrultusunda, küçük ve izole habitatlarda hızla genetik darboğazlara yol açabilir. Yarasalar gibi gösterge türler aracılığıyla bu etkilerin izlenmesi, uzun vadeli koruma planlaması için kritik bilgiler sağlayabilir. Bu çalışma, yarasaların Anadolu Sığlası ( Liquidambar orientalis ) Ormanları'nda parçalanmanın biyoindikatörü olarak uygunluğunu değerlendirdi. Bu ormanlar, şu anda yaklaşık 2.500 hektarı kaplayan, Güneybatı Türkiye ve Rodos Adası'ndaki (Yunanistan) nehir kıyılarıyla sınırlı endemik bir ekosistemdir. Araştırma, Kasım 2022 ile Mayıs 2023 tarihleri arasında Köyceğiz-Dalyan Özel Koruma Alanı'nda (Türkiye) yürütülmüştür. 30 ila 250 hektar arasında değişen on orman parçası, orman büyüklüğü ve parçalanma düzeyine göre dört gruba ayrılmıştır. Bu alanlar arasında eşit olarak dağıtılmış kırk yedi yarasa yuvası iki haftada bir denetlendi. Yarasa varlığı kaydedildi ve bireyler daha ileri izleme için halkalandı. Pipistrellus cinsinin dört türünden toplam 39 birey, yalnızca kışlama döneminde tespit edildi. Halkalanmış yarasaların dağılımı şu şekildeydi: 15'i büyük/çok parçalı alanlarda, 10'u küçük/çok parçalı alanlarda, 14'ü büyük/seyrek parçalı alanlarda ve hiçbiri küçük/seyrek parçalı alanlarda değildi. Tek yönlü ANOVA analizi, parçalanma seviyesinin tünek alanı seçimi üzerinde istatistiksel olarak anlamlı bir etkisi olmadığını ortaya koydu. Umut verici ön bulgulara rağmen, kısa çalışma süresi sonuçların güvenilirliğini sınırlamaktadır. Uzun vadeli izleme, yıllık tünek sadakatini, göç modellerini ve çevresel değişkenlere tepkileri değerlendirmek için esastır. İklim verilerini ve alanlar arasındaki habitat yapısı karşılaştırmalarını içeren gelecekteki çalışmalar, habitat parçalanmasının yarasa ekolojisi üzerindeki etkisini açıklığa kavuşturmaya yardımcı olacaktır. Bu çalışmalar, endemik orman ekosistemlerinin ekolojik değerinin daha derinlemesine anlaşılmasına katkıda bulunacak ve daha etkili koruma stratejilerinin oluşturulmasına katkı sağlayacaktır.
References
Akbaş, K., & Varol, Ö. (2015). Floristic Properties and Life Forms of Liquidambar orientalis Forests Naturally Distributed in Muğla (Türkiye) Province. Biological Diversity and Conservation, 8/3 (2015) 159-167.
Apfelbeck, B., Cousseau, L., Kung’u, G. N., Canoine, V., Heiskanen, J., Korir, D. K., Lala, F., Pellikka, P., Githiru, M., & Lens, L. (2024). Cooperative breeding alters physiological and behavioral responses to habitat fragmentation. iScience, Volume 27, Issue 1, 2024, 108717, https://doi.org/10.1016/j.isci.2023.108717.
Arlettaz, R., Godat, S., & Meyer, H. (2000). Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biological Conservation, 93(1), 55–60. https://doi.org/10.1016/S0006-3207(99)00112-3
Arslan, M. B., & Şahin, H. T. (2016). A Forgetten Forest Product Source: (Liquidambar Orientalis Miller). Journal of Bartın Faculty of Forestry, 18(1):103-117. (In Turkish).
Asbeck, T., Meissier, C., & Bauhus J. (2020). Retention of tree‑related microhabitats is more dependent on selection of habitat trees than their spatial distribution. European Journal of Forest Research, 139:1015-1028.
Bobrowiec, P., William, C., Ana, R., Paul, W., & Ludmilla, A. (2024). Editorial: Human impacts on bats in tropical ecosystems: sustainable actions and alternatives. Frontiers in Ecology and Evolution. 11. 10.3389/fevo.2023.1339754.
Bologna, S., Mazzamuto, M.V., Molinari, A., Mazzaracca, S., Spada, M., Wauters, L.A., Preatoni, D., & Martinoli, A. (2018). Recapture of a banded Bechstein’s bat (Chiroptera, Vespertilionidae) after 16 years: An example of high swarming site fidelity. Mammalian Biology, 91 (2018) 7-9.
Bozkurt, E., Ürker, O., & Elverici, M. (2022). An assessment of the herpetofauna of the Oriental Sweetgum forests in southwestern Anatolia, Türkiye. Phyllomedusa 21(2):125-139. Universidade de Sao Paulo.
Burgin, C. J., Colella, J. P., Kahn, P. L., & Upham, N. S. (2018). How many species of mammals are there?, Journal of Mammalogy, Volume 99, Issue 1, Pages 1–14, https://doi.org/10.1093/jmammal/gyx147
Butti, M., Pacca, L., Santos, P., Alonso, A. C., Buss, G., Ludwig, G., Jerusalinsky, L. & Martins, A. B. (2022). Habitat loss estimation for assessing terrestrial mammalian species extinction risk: an open data framework. Peer J. 2022 Dec 12; 10:e14289. Doi: 10.7717/peerj.14289. PMID: 36530404; PMCID: PMC9753759.
Campbell, L. A, Hallett, J. G., & O’Connell, M. A. (1996). Conservation of Bats in Managed Forests: Use of Roosts by Lasionycteris noctivagans. Journal of Mammology, Volume 77, Issue 4, Page 976-984.
Chen, S., Wu, S., & Ma, M. (2023). Ecological restoration programs reduced forest fragmentation by stimulating forest expansion. Ecological Indicators, 154 (2023) 110855.
Denzinger, A., & Schnitzler, H. U. (2013). Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Front. Physiol. 2013, 4, 164.
Dodds, M., & Bilston, H. (2013). A comparison of different bat box types by bat occupancy in deciduous woodland, Buckinghamshire, UK. Conservation Evidence (2013) 10, 24-28.
Foley, J., Ruth D., Gregory, A., Carol, B., Gordon, B., Stephen, C., III C., Stuart F., Michael, C., Gretchen, D., Holly, G., Joseph, H., Tracey, H., Elena, H., Kucharik, H., Christopher D., Chad, M., Jonathan, P., Iain, P., Navin, R., & Peter, S. (2005). Global Consequences of Land Use. Science (New York, N.Y.). 309. 570-4. 10.1126/science.1111772.
Frick, W. F., (2013). Acoustic monitoring of bats, considerations of options for long-term monitoring. Therya, 4:1, https://doi.org/10.12933/therya-13-109.
Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G., & Obrist, M. K. (2016). From field surveys to LiDAR: Shining a light on how bats respond to forest structure. Remote Sensing of Environment, 175, 242-250. DOI: 10.1016/j.rse.2015.12.038
Haddad, N. M., Brudvig, L. A., Clobert, J., Davies, K. F., Gonzalez, A., Holt, R. D., … & Townshend, J. R. (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. Science Advances, 1, e1500052.
Hendel, A., Winiger, N., Jonker, M., Zielewska-Büttner, K., Ganz, S., Adler, P., & Braunisch, V. (2023). Bat habitat selection reveals positive effects of retention forestry. Forest Ecology and Management, 531 (2023) 120783.
Hill, J., & Smith, J. (1984). Bats: A Natural History. Austin: University of Texas Brooks Cole.
Kavak, S., & Wilson, B. (2018). Liquidambar orientalis. The IUCN Red List of Threatened Species 2018:e.T62556A42326468. http://dx.doi.org/10.2305/IUCN. UK.2018-1.RLTS.T62556A42326468.en.
Kristin, A. (2005). Factors influencing bat assemblages in forest parks. Ekológia (Bratislava). Vol. 24, No. 1, p. 1–327
Li, L., Gou, M. M., Wang, N., La, L. M., & Liu C. F. (2021). Do ecological restoration programs reduce forest fragmentation? Case study of the Three Gorges Reservoir Area, China. Ecological Engineering, 172. 106410. https://doi.org/10.1016/j.ecoleng.2021.106410.
Masing, M., Poots, L., Randla, T., & Lutsar, L. (1999). 50 years of bat-ringing in Estonia: methods and the main results. Plecotus, 2:20–35.
Miller, D. A., Arnett, E. B., & Lacki, M. J. (2003). Habitat management for forest-roosting bats of North America: a critical review of habitat studies. Wildlife Society Bulletin. 31: 30–44.
Neubaum, D., & Aagaard, K. (2022). Use of predictive distribution models to describe habitat selection by bats in Colorado, USA. The Journal of Wildlife Management.
Newman, B. A., Loeb, S. C., & Jachowski, D. S. (2021). Winter roosting ecology of tricolored bats (Perimyotis subflavus) in trees and bridges. Journal of Mammalogy, 102 (5):1331-1341.
Norman, A. P., Jones, G., & Arlettaz, R. (1999). Noctuid moths show neural and behavioural responses to sounds made by some bat-marking rings. Animal Behaviour, 57, 829-835.
Özkil, A., Ürker, O., & Zeydanlı, U. (2017). Art in Sweetgum Forest. Nature Conservation Centre, 161 Pages, Dumat Ofset, ISBN: 978-605-82749-0-7.
Pejic, B., Budinski, I., Karapandza, B., & Paunovic, M. (2018). More than 60 years of ringing Miniopterus schreibersii (Kuhl, 1817) in Serbia: Movements and longevity data. Regional Symposium 2018. Sarajevo. “Conservation Status of Bats in the Central Europe and Western Balkan”. Proceeding Book.
Podlutsky, A. J., Khritankov, A. M., Ovodov, N. D., & Austad, S. N. (2005). A New Field Record for Bat Longevity. Journal of Gerontology: Biological Sciences, Vol.60A, No:11, 1366-1368.
Riva, F., & Fahrig, L. (2023). Landscape-scale habitat fragmentation is positively related to biodiversity, despite patch-scale ecosystem decay. Ecology Letters, 26, 268–277. https://doi.org/10.1111/ele.14145
Riva, F., Koper, N., & Fahrig, L. (2024). Overcoming confusion and stigma in habitat fragmentation research. Biol Rev. https://doi.org/10.1111/brv.13073.
Rowley, S., López-Baucells, A., Rocha, R., Bobrowiec, P. E. D., & Meyer, C. F. J. (2024). Secondary forest buffers the effects of fragmentation on aerial insectivorous bat species following 30 years of passive forest restoration. Restoration Ecology, 32(3).
Russo, D., & Jones, G. (2015). Bats as bioindicators: An introduction. Mammal Biology, 80 (3), 157–158. http://dx.doi.org/10.1016/j.mambio.2015.03.005
Russo, D, Salinas-Ramos, V.B., Cistrone, L., Smeraldo, S., Bosso, L., & Ancillotto, L. (2021). Do We Need to Use Bats as Bioindicators? Biology (Basel). 21;10(8):693. doi: 10.3390/biology10080693.
Russo, D., Maenurm, A., Martinoli, A., Zotti, M., & Cistrone, L. (2023). Forest islands in farmland provide vital roost trees year-round for giant and common noctule bats: Management implications. Forest Ecology and Management 540 (2023) 121053.
Scherrer, D., Christe, P., & Guisan, A. (2019). Modelling bat distributions and diversity in a mountain landscape using focal predictors in ensemble of small models. Diversity and Distributions. 2019;25:770–782.
Schroder, E., & Ward, R. (2022). Tree Girdling for Potential Bat Roost Creation in Northwestern West Virginia. Forests 2022, 13, 274.
Silvis, A., Perry, R. W., & Ford, W. M. (2016). Relationships of Three Species of Bats Impacted by White-Nose Syndrome to Forest Condition and Management. United States Departmanent of Agriculture Forest Servise Research & Development Southern Research Station General Technical Report SRS-2014.
Speakman, J. R., & Thomas, D. W. (2003). Physiological ecology and energetics of bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 430–492.
Taylor, D. A. R. (2006). Forest Manegement and Bats. Bat Conservation International, 1-14.
Xu, W., Xiao, Y., Zhang, J., Yang, W., Zhang, L., Hull, V., Wang, Z., Zheng, H., Liu, J., Polasky, S., Jiang, L., Xiao, Y., Shi, X, Rao, E., Lu, F., Wang, X., Daily, G. C., & Ouyang, Z. (2017). Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl Acad. Sci. USA 114 (7), 1601–1606 (2017). https://doi.org/10.1073/pnas.1620503114
Ürker, O., Usta Baykal, N., & Ada, E. (2023). Increasing temperatures can pose an opportunity to recover endemic and endangered oriental sweetgum tree (Liquidambar orientalis Mill.) from extinction. Turkish Journal of Botany 47 (5), 363-371.
Ürker, O., & Çobanoğlu, N. (2017). Anatolian Sweetgum Forests In Terms of Environmental Ethics. 204 Pages. ISBN: 978-3-659-94199-3. LAP-Lambert Academic Publishing, Germany, 2017. (In Turkish).
Ürker, O., & Günlü, A. (2024). Identification of plantation areas for the endangered oriental sweetgum tree (Liquidambar orientalis Miller, 1768) in Türkiye. International Journal of Environmental Science and Technology. 21:1, 153-168.
Ürker, O., & Yorulmaz T. (2020). Determination of the bat (Chiroptera) activity in the Anatolian sweetgum forests inside Köyceğiz-Dalyan Specially Protected Area. Turkish Journal of Forestry Research 2020, 7:1, 88-103. https://doi.org/10.17568/ogmoad.651223 (In Turkish).
Vaughan, T., Ryan. J., & Czaplewski, N. (2000). Mammalogy, 4th Edition. Toronto: Brooks Cole.
Vasenkov, D., Desmet, J., Popov, I., Sidorchuk, N., 2022. Bats can migrate farther than it was previously known: a new longest migration record by Nathusius’ pipistrelle Pipistrellus nathusii (Chiroptera: Vespertilionidae). Mammalia 2022; 86(5): 524-526
Vasko, V., Blomberg, A., Vesterinen, E., Suominen, K. M., Ruokolainen, L., Brommer, J. E., Norrdahl, K., Niemela, P., Laine, V. N., Selonen, V., Santangeli, A., & Lilley, T. M. (2020). Within-season changes in habitat use of forest-dwelling boreal bats. Ecology and Evolution. 2020;10:4164-4174.
Velioğlu, E., Kandemir, G., Tayanç, Y., Çengel, B., Alan, M., & Kaya, Z. (2008). Determination of Genetic Diversity and Gene Conservation Strategies for Oriental Sweetgum (Liquidambar orientalis Miller) Populations in Türkiye by Molecular Markers. T.C. Çevre ve Orman Bakanlığı, Orman Ağaçları ve Tohumları Islah Araştırma Müdürlüğü, Teknik Bülten No:20, Bakanlık Yayın No:339, Pp.43, Ankara-Türkiye, 2008. (In Turkish).
Watts, I. D., Walls, S., & Jones, G. (2006). Differential habitat selection by Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct conservation needs for cryptic species of echolocating bats. Biological Conservation Volume 133, Issue 1, November 2006, Pages 118-127.
Yorulmaz, T., Ürker, O., & Özmen, R. (2018). An evaluation on the relation of bat and forest. Turkish Journal of Forestry Research, 5:1, 31-43. https://doi.org/10.17568/ogmoad.377123 (In Turkish).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.