Abundance, activity pattern and habitat suitability of the selected wildlife species in Ob Khan National Park, Northern Thailand


  • Jirapar Nasoongnern Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Road, Chatuchak District, Bangkok10900, Thailand, 10900
  • Warong Suksavate Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Road, Chatuchak District, Bangkok10900, Thailand, 10900
  • Jesada Noowong Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Road, Chatuchak District, Bangkok10900, Thailand, 10900
  • Bunyathiporn Kaewdee Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Road, Chatuchak District, Bangkok10900, Thailand, 10900
  • Niphaporn Pisarn Ob Khan National Park, Nam Phrae Subdistrict, Hang Dong District, Chiang Mai Province, Thailand, 50230
  • Ronglarp Sukmasuang Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Phahonyothin Road, Chatuchak District, Bangkok10900, Thailand, 10900




Bioclimatic variable, Common Plam Civet, Land cover variable, Northern Thailand, Topographic variable


The study on the abundance, activity patterns, and suitable habitats of the selected wild mammal species in Ob Khan National Park, Chiang Mai Province, representing the northern conservation area of the country, was conducted using camera traps between August 2021 and July 2022. The study results from 4,304 trap-nights revealed at least nine species of mammals. These included wild boar (Sus scrofa), followed by golden jackal (Canis aureus), red muntjac (Muntiacus muntjac), common palm civet (Paradoxurus hermaphroditus), rhesus macaque (Macaca mulatta), northern serow (Capricornis sumatraensis), northern tree shrew (Tupaia belangeri), leopard cat (Prionailurus bengalensis) and murid species. Most of the wildlife activity occurred during nighttime. The factors influencing the presence of the wildlife species that could be analyzed include three species: red junglefowl, common palm civet, and wild boar. The average percent contribution indicated that climate variables have the highest influence, particularly rainfall, followed by land cover variables and topographic variables. It was found that the factors influencing the presence of the three species do not differ. It also was found that more than 90% of the study area is classed as moderately suitable and less suitable for the wildlife. Therefore, management efforts should focus on highly suitable areas, including the conservation of the mixed deciduous and pine forests, while water source enhancement for wildlife conservation should be protected and improved.


Ab Lah, Z.N., Yusop, Z., Hashim, M., Salim, J.M., & Numata, S. (2021). Predicting the habitat suitability of Melaleuca cajuputi based on the MaxEnt species distribution model. Forests 12(11):1449. https://doi.org/10.3390/f12111449

Apidechkul, T. (2015). HIV/AIDS in the hill tribe population of Thailand – A 20-year retrospective study. Int J Epidemiol 44(suppl_1): i103–i103. https://doi.org/10.1093/ije/dyv096.049

Avibase - The World Bird Database. (2024). Avibase - Bird Checklists of the World. http://www.avibase.bsc-eoc.org/checklist.jsp

Berhanu, Y., Tassie, N., & Sintayehu, D.W. (2022). Predicting the current and future suitable habitats for endemic and endangered Ethiopian wolf using MaxEnt model. Heliyon 8(8): e10223. https://doi.org/10.1016/j.heliyon. 2022.e10223

Chatterjee, S., & Hadi, A.S. (2006). Regression Analysis by Example: Chatterjee/Regression. Hoboken, NJ, USA: John Wiley and Sons, Inc.

Dehaudt, B., Amir, Z., Decoeur, H., Gibson, L., Mendes, C., Moore, J.H., Nursamsi, I., Sovie, A., & Luskin, M.C. (2022). Common palm civets Paradoxurus hermaphroditus are positively associated with humans and forest degradation with implications for seed dispersal and zoonotic diseases. J Anim Ecol 91(4): 794-804. https://doi.org/10.1111/1365-2656.13663

Department of National Parks, Wildlife and Plant Conservation. (2024). Ob Khan National Park. http://www.portal.dnp.go.th/Content/nationalpark?contentId=923

Department of Social Development and Welfare. (2016). Directory of communities in the highlands. Covering an area of 20 provinces in Thailand for the year 2016. Bangkok: Department of Social Development and Welfare. Ministry of Social Development and Human Security. (Thai)

Dimiceli, C., Carroll, M., Sohlberg, R., Kim, D.H., Kelly, M., & Townshend, J. (2015). MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. http://www.ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD44B

Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J., Münkemüller, T., McClean, C., Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurell, D., & Lautenbach, S. (2013). Collinearity: a review of methods to deal with It and a simulation study evaluating their performance. Ecography 36(1):27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x.

Dormann, C.F., McPherson, J.M., Araújo, M.B., Bivand, R., Bolliger, J., Carl, G., Davies, R.G., Hirzel, A., Jetz, W., Kissling, W.D., Kühn, I., Ohlemüller, R., Peres‐Neto, P.R., Reineking, B., Schröder, B., Schurr, F.M., & Wilson, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5):609–28. https://doi.org/10.1111/j.2007.0906-7590.05171.x.

Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The shuttle radar topography mission. Rev Geophys 45(2):2005RG000183. https://doi.org/10.1029/2005RG000183.

Fawcett, T. (2006). An Introduction to ROC Analysis. Pattern Recognit Lett 27(8):861–74. https://doi.org/10.1016/j.patrec.2005.10.010.

Fick, S.E., & Hijmans, R.J. (2017). WorldClim 2: New 1‐km Spatial resolution climate surfaces for global land areas. Int J Climatol 37(12):4302–15. https://doi.org/10.1002/joc.5086.

Gethöffer, F., Keuling, O., Maistrelli, C., Ludwig, T., & Siebert, U. (2023). Heavy youngsters’ habitat and climate factors lead to a significant increase in body weight of wild boar females. Animals 13(5):898. https://doi.org/10.3390/ani13050898.

Gistnu. (2023). Regional Center of Geo-Informatics and Space Technology. http://www.gistnu.nu.ac.th/

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ 202:18–27. https://doi.org/10.1016/j.rse.2017.06.031.

Haenssgen, M.J., Leepreecha, P., Sakboon, M., Chu, T.W., Vlaev, I., & Auclair, E. (2023). The impact of conservation and land use transitions on the livelihoods of indigenous peoples: A narrative review of the northern Thai highlands. For Policy Econ. 157:103092. https://doi.org/10.1016/j.forpol.2023.103092.

Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., & Jarvis, A. (2005). Very high-resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–78. https://doi.org/10.1002/joc.1276.

Junkhiaw, S., Arunpraparut, W., Tangtham, N., Snidvong, A., & Yarwudhi, C. (2013). Decision support system for a flash Flood and landslide warning system in an upper watershed: a case study at Mae Wang watershed, Chiang Mai Province. TJF 32(1):35–50. http://www.li01.tci-thaijo.org/index.php/tjf/article/view/255572

Kamyo, T., & Asanok, L. (2020). Modeling habitat suitability of Dipterocarpus Alatus (Dipterocarpaceae) using MaxEnt along the Chao Phraya River in Central Thailand. Forest Sci Technol 16(1):1–7. https://doi.org/10.1080/21580103.2019.1687108.

Khanum, R., Mumtaz, A.S., & Kumar, S. (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol 49:23–31. https://doi.org/10.1016/j.actao.2013.02.007.

Kopsieker, L., & Disselhoff, T. (2024). The contribution of private land conservation to 30x30 in Germany. Front conserv sci 4:1324928. https://doi.org/10.3389/fcosc.2023.1324928.

Kupika, O.L., Gandiwa, E., Kativu, S., & Nhamo, G. (2018). Impacts of Climate Change and Climate Variability on Wildlife Resources in Southern Africa: Experience from Selected Protected Areas in Zimbabwe. http://www.intechopen.com/chapters/56873

IUCN (2024). The IUCN Red List of Threatened Species. Version 2023-1. http://www.iucnredlist.org/

U.S. Geological Survey. (2024). Landsat Normalized Difference Vegetation Index. http://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index

Lekagul, B., & McNeely, J.A. (1988). Mammals of Thailand. Darnsutha Press, Bangkok.

Lekagul, B., & Round, P.D. (1991). A Guide to the Birds of Thailand. Darnsutha Press, Bangkok.

Malhi, Y., Lander, T., le Roux, E., Stevens, N., Macias-Fauria, M., Wedding, L., Girardin, C., Kristensen, J.Å., Sandom, C.J, Evans, T.D., Svenning, J.C., & Canney, S. (2022). The role of large wild animals in climate change mitigation and adaptation. Curr Biol 32(4): 181–196.

Masud, M.B., Soni, P., Shrestha, S., & Tripathi, N.K. (2016). Changes in climate extremes over north Thailand, 1960–2099. Int J Climatol 1–18. https://doi.org/10.1155/2016/4289454.

McGarvey, D.J., Brown, A.L., Chen, E.B., Viverette, C.B., Tuley, P.A., Latham, O.C., Gibbs, P.M., Richins, A.E., Deadwyler, M.C., Lin, B., & Kaseloo, E.A. (2021). Do fishes enjoy the view? A MaxEnt assessment of fish habitat suitability within scenic rivers. Biol Conserv 263:109357. https://doi.org/10.1016/j.biocon.2021.109357.

Morasca, S., & Lavazza, L. (2020). On the assessment of software defect prediction models via ROC curves. Empir Softw Eng 25(5):3977–4019. https://doi.org/10.1007/s10664-020-09861-4.

Morton, M.F., & Baird, I.G. (2019). From hill tribes to indigenous peoples: the localization of a global movement in Thailand. J Southeast Asian Stud 50(1):7–31. https://doi.org/10.1017/S0022463419000031.

Naderi, M., Kusak, J., Bojarska, K., Chynoweth, M., Green, A., & Şekercioğlu, Ç.H. (2021). Hares, humans, and lynx activity rhythms: who avoids whom? Hystrix, the Italian Journal of Mammalogy 32(2):147-152. https://doi.org/10.4404/hystrix-00462-2021.

Naimi, B., Hamm, N.A.S., Groen, T.A., Skidmore, A.K., & Toxopeus, A.G. (2014). Where is positional uncertainty a problem for species distribution modelling? Ecography 37(2):191–203. https://doi.org/10.1111/j.16000587.2013.00205.x.

Nakashima, Y., Nakabayashi, M., & Sukor, J.A. (2013). Space use, habitat selection, and day-beds of the common palm civet (Paradoxurus hermaphroditus) in human-modified habitats in Sabah, Borneo. J Mammal 94 (5) 116-118. https://doi.org/10.1644/12-MAMM-A-140.1

Naqibzadeh, A., Sarhangzadeh, J., Sotoudeh, A., & Jafari, M. J. (2022). Habitat suitability modeling of Goitered gazelle (Gazella subgutturosa): A Maximum Entropy approach from Samelghan plain, Iran. Scientific Reports in Life Sciences, 3(3), 11–28. https://doi.org/10.5281/zenodo.7058808

Palencia, P., Barroso, P., Vicente, J., Hofmeester, T.R., Ferreres, J., & Acevedo, P. (2022). Random encounter model is a reliable method for estimating population density of multiple species using camera traps. Remote Sens Ecol Conserv 8(5):670–82. https://doi.org/10.1002/rse2.269.

Pardthaisong, L., Sinampol, P., Suwanprasit, C., & Charoenpanyanet, A. (2018). Haze Pollution in Chiang Mai, Thailand: A road to resilience. Procedia Eng 212: 85–92. https://doi.org/10.1016/j.proeng.2018.01.012.

Phillips, S.J., Anderson, R.P., Dudík, M., Schapire, R.E., & Blair, M.E. (2017). Opening the black box: An open‐source release of Maxent. Ecography 40(7):887–93. https://doi.org/10.1111/ecog.03049.

Parikesit, P., Withaningsih, S., & Prastiwi, W.D. (2019). Estimated Abundance and Distribution of Common Palm Civet (Paradoxurus hermaphroditus, Pallas 1777) in the Rural Landscape of Sukaresmi, West Bandung Regency. Environ Earth Sci 306: 012003. https://doi.org/10.1088/1755-1315/306/1/012003

Pomoim, N., Hughes, A.C., Trisurat, Y., & Corlett, R.T. (2022). Vulnerability to climate change of species in protected areas in Thailand. Sci Rep 12(1):5705. https://doi.org/10.1038/s41598-022-09767-9.

Rafatpey, P., Lahout, M., Rahnavard, A., Biklarian, H., & Jafarzadeh, M. (2023). Ground squirrels (Spermophilus fulvus) habitat suitability using MaxEnt and ENFA modeling approaches. Sustainability and Biodiversity Conservation, 2(1), 6–19. https://doi.org/10.5281/zenodo.7641302

R Core Team. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org

Ren, Z., Wang, D., Ma, A., Hwang, J., Bennett, A., Sturrock, H.J.W., Fan, J., Zhang, W., Yang, D., Feng, X., Xia, Z., Zhou, X.N., & Wang, J. (2016). Predicting malaria vector distribution under climate change scenarios in China: challenges for malaria elimination. Sci Rep 6(1):20604. https://doi.org/10.1038/srep20604.

Royal Department of Mineral Resources. (2014). The Excursion Guide Book. http://www.dmr.go.th/wp-content/uploads/2022/11/article_20140227115635.pdf

Royal Forest Department. (2018). Forestry in Thailand. http://www.forprod.forest.go.th/forprod/ebook

Scheldeman, X., & van Zonneveld, M. (2010). Training Manual on Spatial Analysis of Plant Diversity and Distribution. Bioversity International, Rome, Italy. http://www.core.ac.uk/download/pdf/132681195.pdf

Srisoda, S. (2016). Hill Tribes and Ethnic Tourism: next step Thailand tours. http://www.nextstepthailand.com/hill-tribes-northern-thailand-tourism/

Swanti, S., Kusum, A., Dhruval, B., & Rajkanti, K. (2018). Modeling habitat suitability of Perilla frutescens with MaxEnt in Uttarakhand a conservation approach. J Appl Res Med Aromat Plants 10: 99-105. https://doi.org/10.1016/j.jarmap.2018.02.003

Sukmasuang, R., Chaisomboon, P., Paansri, P., Trisurat, Y., Kanka, P., Khiowsree, N., Kaewdee, B., Siripattanukul, K., & Chankhao, A. (2023). Abundance and factors affecting the appearance of Siamese fireback and Red junglefowl in the lowland forest of Thailand. Biodiversitas 24: 5718-5730. https://doi.org/10.13057/biodiv/d241054

Tanwar, K.S., Sadhu, A., & Jhala, Y.V. (2021). Camera Trap Placement for Evaluating Species Richness, Abundance, and Activity. Sci Rep 11(1):23050. https://doi.org/10.1038/s41598-021-02459-w.

Thai National Parks. (2024). Doi Inthanon National Park. http://www.thainationalparks.com/doi-inthanon-national-park

Thinphovong, C., Kritiyakan, A., Chakngean, R., Paladsing, Y., Makaew, P., Labadie, M., Mahuzier, C., Phimpraphai, W., Morand, S., & Chaisiri, K. (2023). From protected habitat to agricultural land: dogs and small mammals link habitats in northern Thailand. Ecologies 4(4):671-685. https://doi.org/10.3390/ecologies4040044

Trisurat, Y., Kanchanasaka, B., & Kreft, H. 2014. Assessing potential effects of land use and climate change on mammal distributions in northern Thailand. Wildl Res 41(6):522. https://doi.org/10.1071/WR14171.

Trisurat, Y., Shirakawa, H., & Johnston, J. (2019). Land-use/land-cover change from socio-economic drivers and their impact on biodiversity in Nan Province, Thailand. Sustainability 11(3):649. https://doi.org/10.3390/su11030649.

Trisurat, Y., Sutummawong, N., Roehrdanz, P.R., & Chitechote, A. (2023). Climate change impacts on species composition and floristic regions in Thailand. Diversity 15(10):1087. https://doi.org/10.3390/d15101087.

Vetter, S.G., Puskas, Z., Bieber, C., & Ruf, T. (2020). How climate change and wildlife management affect population structure in wild boars. Sci Rep 10(1):7298. https://doi.org/10.1038/s41598-020-64216-9.

Vetter, S.G., Thomas, R., Claudia, B., & Walter, A. (2015). What is a mild winter? regional differences in within-species responses to climate change. PLOS ONE 10(7):e0132178. https://doi.org/10.1371/journal.pone.0132178.

Virapongse, A. (2017). Smallholders and forest landscape restoration in upland northern Thailand. Int For Rev 19(4):102–19. https://doi.org/10.1505/146554817822330533.

Wildlife Conservation Society. (2024). SMART Patrol Technique for Protected Area Management. http://www.thailand.wcs.org/en-us/Initiatives/SMART-Patrol-System/

Wearn, O.R., & Glover-Kapfer, P. (2017). Camera-Trapping for Conservation: A Guide to Best-Practices. WWF Conservation Technology Series. WWF-UK, Woking, United Kingdom. https://doi.org/10.13140/RG.2.2.23409.17767.

WorldClim. 2024. Global climate and weather data. http://www.worldclim.org/

Yi, Y., Xi, C., Zhi-Feng, Y., & Shang-Hong, Z. 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. Riparia Lour) in Yunnan, China. Ecol Eng 92:260–69. https://doi.org/10.1016/j.ecoleng.2016.04.010.

U.S. Geological Survey. (2024). USGS EROS Archive - Digital Elevation - Shuttle Radar Topography Mission (SRTM). http://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm

Zaragozí, B., Belda, A., Giménez, P., Navarro, J.T., & Bonet, A. (2015). Advances in camera trap data management tools: towards collaborative development and integration with GIS. Ecol Inform 30:6–11. https://doi.org/10.1016/j.ecoinf.2015.08.001.




How to Cite

Nasoongnern, J. ., Suksavate, W. ., Noowong, J. ., Kaewdee, B. ., Pisarn, N. ., & Sukmasuang, R. . (2024). Abundance, activity pattern and habitat suitability of the selected wildlife species in Ob Khan National Park, Northern Thailand. Journal of Wildlife and Biodiversity, 8(2), 81–102. https://doi.org/10.5281/zenodo.10939107

Most read articles by the same author(s)