Phytochemical analysis and anthelmintic activity of Andrographis paniculata, Azadirachta indica, and Litsea elliptica leaves extracts against Caenorhabditis elegans


  • Syahirah Shahlehi Faculty of Agriculture, Sinaut Campus, Universiti Islam Sultan Sharif Ali, Km 33, Jln Tutong Kampong Sinaut, Tutong, TB1741, Brunei Darussalam
  • Rosli Kasah Faculty of Agriculture, Sinaut Campus, Universiti Islam Sultan Sharif Ali, Km 33, Jln Tutong Kampong Sinaut, Tutong, TB1741, Brunei Darussalam
  • Mark I.R. Petalcorin PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
  • Mohammed Mujithaba Mohamed Najim Faculty of Agriculture, Sinaut Campus, Universiti Islam Sultan Sharif Ali, Km 33, Jln Tutong Kampong Sinaut, Tutong, TB1741, Brunei Darussalam



egg-laying, head thrashing, nematicide activity, parasitic infection, plant secondary metabolite, toxicity


Despite the challenges posed by multi-drug resistance in synthetic anthelmintics, the potential of plant extracts as an alternative helminth control option offers a ray of hope. The current study, conducted with meticulous care and thoroughness, delves into the anthelmintic activity of crude water and ethanol extracts of three plant species, Andrographis paniculata (Hempedu Bumi), Azadirachta indica (Neem), and Litsea elliptica (Pawas), against the nematode, C. elegans. The preparation of water and ethanol extracts from the three plants involved maceration and ultrasonic methods, respectively. Phytochemical screening was conducted to identify the active compounds in both extracts, followed by determining the total phenolic content (TPC) and total flavonoid contents (TFC) using the corresponding Folin-Ciocalteau and aluminum colorimetric methods. The percentage yields of water extracts were 15.10%, 13.11%, and 9.55%, and ethanol extracts were 9.78%, 2.94%, and 15.50% for A. paniculata, A. indica, and L. elliptica, respectively. All extracts tested positive for alkaloids, steroids, terpenoids, protein, and carbohydrates. In water extract, A. indica exhibited the highest total phenolic (TPC) and total flavonoid (TFC) contents of 58.38 ± 0.005 mg GAE/g and 18.68 ± 0.005 mg QE/g, respectively. In contrast, in ethanol extract, L. elliptica exhibited the highest TPC and TFC of 122.67 ± 0.398 mg GAE/g and 96.69 ± 0.027 mg QE/g, respectively. L. elliptica ethanol extract appeared to induce the most pronounced effect on reducing head thrashing activity compared to other extracts in C. elegans. Both water and ethanol extracts of A. indica and L. elliptica exhibited significant mortality in all examined concentrations with maximum mortality.


Ahmed, A. H., Ejo, M., Feyera, T., Regassa, D., Mummed, B., & Huluka, S. A. (2020). In vitro anthelmintic activity of crude extracts of Artemisia herba-alba and Punica granatum against Haemonchus contortus. Journal of parasitology research, 2020(1), 4950196.

Aggarwal, R., Kaur, K., Suri, M., & Bagai, U. (2016). Anthelmintic potential of Calotropis procera, Azadirachta indica and Punica granatum against Gastrothylax indicus. Journal of Parasitic Diseases, 40(4), 1230–1238.

Ahmed, A. H., Ejo, M., Feyera, T., Regassa, D., Mummed, B., & Huluka, S. A. (2020). In vitro anthelmintic activity of crude extracts of Artemisia herba-alba and Punica granatum against Haemonchus contortus. Journal of parasitology research, 2020.

Ahmad, S., Maqbool, A., Srivastava, A., & Gogol, S. (2019). Biological detail and therapeutic effect of Azadirachta indica (neem tree) products-a review. Evidence Based Med. Healthcare, 6(22), 1607-1612.

Akhtar, N., & Mirza, B. (2018). Phytochemical analysis and comprehensive evaluation of antimicrobial and antioxidant properties of 61 medicinal plant species. Arabian journal of chemistry, 11(8), 1223-1235.

Atanassova, M., Georgieva, S., & Ivancheva, K. (2011). Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. Journal of the University of Chemical Technology & Metallurgy, 46(1).

Baba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah university for science, 9(4), 449-454.

Bader, A., Abdelhady, M. I., Shaheen, U., El-Malah, Y., Abourehab, M. A. S., & Barghash, M. F. (2015). Azadirachta indica as a source for antioxidant and cytotoxic polyphenolic compounds. Biosciences Biotechnology Research Asia, 12(2), 1209-1222.

Baihaqi, Z. A., Widiyono, I., & Nurcahyo, W. (2019). Prevalence of gastrointestinal worms in Wonosobo and thin-tailed sheep on the slope of Mount Sumbing, Central Java, Indonesia. Veterinary World, 12(11), 1866.

Banerjee, T., Singh, A., Kumar, S., Dhanani, T., Gajbhiye, N. A., Koley, T. K., Maurya, A. & Filgona, J. (2019). Ovicidal and larvicidal effects of extracts from leaves of Andrographis paniculata (Burm. F.) Wall.ex Nees against field isolates of human hookworm (Ancylostoma duodenale). Journal of ethnopharmacology, 235, 489–500.

Bardi, D. A., Halabi, M. F., Hassandarvish, P., Rouhollahi, E., Paydar, M., Moghadamtousi, S. Z., Al-Wajeeh, N. S., Ablat, A., Badullah, N. A. & Abdulla, M. A. (2014). Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats. PloS one, 9(10), e109424.

Belga, F. N., Waindok, P., Raulf, M. K., Jato, J., Orman, E., Rehbein, S., Spiegler, V., Liebau, E., Hensel, A., Ndjonka, D., & Strube, C. (2024). Phytochemical analysis and anthelmintic activity of Combretum mucronatum leaf extract against infective larvae of soil-transmitted helminths including ruminant gastrointestinal nematodes. Parasites & Vectors, 17(1), 99.

Burns, A. R., Luciani, G. M., Musso, G., Bagg, R., Yeo, M., Zhang, Y., Rajendran, L., Glavin, J., Hunter, R., Redman, E., et al. (2015). Caenorhabditis elegans is a useful model for anthelmintic discovery. Nature Communications, 6(1), 1-11.

Cabardo Jr, D. E., & Portugaliza, H. P. (2017). Anthelmintic activity of Moringa oleifera seed aqueous and ethanolic extracts against Haemonchus contortus eggs and third stage larvae. International journal of veterinary science and medicine, 5(1), 30-34.

Castagna, F., Bava, R., Gagliardi, M., Russo, S., Poerio, G., Ruga, S., Lupia, C., Cringoli, G., Bosco, A., Rinaldi, L., Palma, E., Britti, D., & Musella, V. (2024). Prevalence of Helminths in Small Ruminant Farms and Evaluation of Control Practices Used to Counter Anthelmintic Resistance in Southern Italy. Pathogens, 13(6), 493.

Chastity, C. N., Yuwono, K. L., Utami, U., Ap, P. A., Priscillah, W., & Sutrisna, E. (2015). The anthelmintics effect of Momordica charantia L. leaves and Andrographis paniculata Ness. From Indonesia. International Journal of Ayurveda and Pharma Research, 3(6), 33-39.

Costa, C. T. C., Bevilaqua, C. M. L., Camurça-Vasconcelos, A. L. F., Maciel, M. V., Morais, S. M., Castro, C. M. S., Braga, R. R., & Oliveira, L. M. B. (2008). In vitro ovicidal and larvicidal activity of Azadirachta indica extracts on Haemonchus contortus. Small Ruminant Research, 74(1-3), 284-287.

Dai, Y., Chen, S. R., Chai, L., Zhao, J., Wang, Y., & Wang, Y. (2019). Overview of pharmacological activities of Andrographis paniculata and its major compound andrographolide. Critical reviews in food science and nutrition, 59(sup1), S17-S29.

Daley, S. K., & Cordell, G. A. (2021). Alkaloids in contemporary drug discovery to meet global disease needs. Molecules, 26(13), 3800.

Department of Agriculture and Agrifood (DoAA). (2023 June 15). Helminthiasis Cases in Brunei. (Syahirah Shahlehi and Rosli Kasah, Interviewer)

Deshmukh, M. A., & Theng, M. A. (2018). Phytochemical Screening, Quantitative Analysis of Primary and Secondary Metabolites of Acacia Arabica Bark. International Journal of Current Pharmaceutical Research, 10(2), 35.

Fan, Z., Wang, L., Qin, Y., & Li, P. (2023). Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydrate Polymers, 306, 120592.

Goh, M. P. Y., Kamaluddin, A. F., Tan, T. J. L., Yasin, H., Taha, H., Jama, A., & Ahmad, N. (2022). An evaluation of the phytochemical composition, antioxidant and cytotoxicity of the leaves of Litsea elliptica Blume – An ethnomedicinal plant from Brunei Darussalam. Saudi Journal of Biological Sciences, 29(1), 304–317.

Greiffer, L., Liebau, E., Herrmann, F. C., & Spiegler, V. (2022). Condensed tannins act as anthelmintics by increasing the rigidity of the nematode cuticle. Scientific Reports, 12(1), 18850.

Gunathilaka, N., Niroshana, D., Amarasinghe, D., & Udayanga, L. (2018). Prevalence of gastrointestinal parasitic infections and assessment of deworming program among cattle and buffaloes in Gampaha District, Sri Lanka. BioMed research international, 2018(1), 3048373.

Hellawi, H., & Ibrahim, O. M. S. (2020). Evaluation of anthelmintic activity of N-hexane extract of Cucurbita maxima and Azadirachta indica pulp seeds against Ascaridia galli In Vitro. Biochemical and Cellular Archives, 21(1), 211–217.

Hikaambo, C. N. A., Kaacha, L., Mudenda, S., Nyambe, M. N., Chabalenge, B., Phiri, M., Biete, L. L., Akapelwa, T. M., Mufwambi, W., Chulu, M. & Kampamba, M. (2022). Phytochemical analysis and antibacterial activity of Azadirachta indica leaf extracts against Escherichia coli. Pharmacology & Pharmacy, 13(1), 1-10.

Holden-Dye, L., & Walker, R. (2014). Anthelmintic drugs and nematocides: studies in Caenorhabditis elegans. WormBook: the online review of C. elegans biology, 1-29.

Hotez, P. J., Brindley, P. J., Bethony, J. M., King, C. H., Pearce, E. J., & Jacobson, J. (2008). Helminth infections: the great neglected tropical diseases. The Journal of clinical investigation, 118(4), 1311-1321.

Ibekwe, H. A. (2019). In vitro anthelmintic activities of aqueous crude extract of Azadirachta indica on Paramphistomum cervi and Fasciola hepatica. International Journal of Veterinary Sciences and Animal Husbandry, 4(1), 14–18.

Iqbal, E., Salim, K. A., & Lim, L. B. L. (2015). Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. Journal of King Saud University - Science, 27(3), 224–232.

Isha, A., Suyut, M. A., Yusof, N. A., Mastuki, S. N., Ismail, I. S., (2013). Optimization of extraction method and qualitative FT-NMR analysis of Andrographis paniculata leaves. International Journal of Food Science and Technology 3(4), 1-10.

Ji, H. F., Zhang, L. W., Zhang, Y., Jin, H. H., & Wang, L. Y. (2012). Antioxidant properties of laoying tea (Litsea coreana L.) extracts. Advanced Materials Research, 340, 209-214.

Kamaruzaman, K. A., & Noor, M. M. (2017). Gynura procumbens leaf improves blood glucose level, restores fertility and libido of diabetic-induced male rats. Sains Malaysiana, 46(9), 1471-1477.

Kasah, R., Shahlehi, S., Petalcorin, M. I., Najim, M. M., Ahmed, O. H., Choo, L. N. L. K., & Sekot, S. (2024). Potential anthelminthic properties of selected medicinal plants in Brunei Darussalam: a phytochemical review. Journal of Wildlife and Biodiversity, 6(X), 88-110.

Katiki, L. M., Ferreira, J. F., Gonzalez, J. M., Zajac, A. M., Lindsay, D. S., Chagas, A. C. S., & Amarante, A. F. (2013). Anthelmintic effect of plant extracts containing condensed and hydrolyzable tannins on Caenorhabditis elegans, and their antioxidant capacity. Veterinary Parasitology, 192(1-3), 218-227.

Kaur, N., & Gupta, J. (2017). Comparison of phytochemical extraction solvents for Andrographis paniculata. Research Journal of Pharmacy and Technology, 10(5), 1271-1276.

Keiser, J., & Utzinger, J. (2008). Efficacy of current drugs against soil-transmitted helminth infections: systematic review and meta-analysis. Jama, 299(16), 1937-1948.

Kļaviņa, A., Keidāne, D., Ganola, K., Lūsis, I., Šukele, R., Bandere, D., & Kovalcuka, L. (2023). Anthelmintic Activity of Tanacetum vulgare L. (Leaf and Flower) Extracts against Trichostrongylidae Nematodes in Sheep In Vitro. Animals, 13(13), 2176.

Kuzminac, I. Z., Savić, M. P., Ajduković, J., & Nikolić, A. R. (2023). Steroid and triterpenoid compounds with antiparasitic properties. Current Topics in Medicinal Chemistry, 23(9), 791-815.

Lee, S. Y., & Kang, K. (2017). Measuring the Effect of Chemicals on the Growth and Reproduction of Caenorhabditis elegans. Journal of Visualized Experiments, (128), e56437.

Machado, A. R. T., Ferreira, S. R., da Silva Medeiros, F., Fujiwara, R. T., de Souza Filho, J. D., & Pimenta, L. P. S. (2015). Nematicidal activity of Annona crassiflora leaf extract on Caenorhabditis elegans. Parasites & vectors, 8, 1-5.

Mahabub-Uz-Zaman, M., Ahmed, N. U., Akter, R., Ahmed, K., Aziz, M. S. I., & Ahmed, M. S. (2009). Studies on anti-inflammatory, antinociceptive and antipyretic activities of ethanol extract of Azadirachta indica leaves. Bangladesh Journal of Scientific and Industrial Research, 44(2), 199-206.

Maphosa, V., & Masika, P. J. (2010). Ethnoveterinary uses of medicinal plants: A survey of plants used in the ethnoveterinary control of gastro-intestinal parasites of goats in the Eastern Cape Province, South Africa. Pharmaceutical Biology, 48(6), 697-702.

Mariani, F., Tammachote, R., Kusuma, I. W., Chavasiri, W., & Prasongsuk, H. P. S. (2021). Phenolic Content and Biological Activities of Ethanol Extracts from Medicinal Plants in East Kalimantan, Indonesia. Sains Malaysiana, 50(8), 2193-2205.

Mohammad, N. (2021). A study on Litsea monopetala for evaluating its pharmacological properties. Discovery Phytomedicine, 8(1).

Mordvinov, V. A., Ponomarev, D. V., Pakharukov, Y. V., & Pakharukova, M. Y. (2021). Anthelmintic activity of antioxidants: in vitro effects on the liver fluke Opisthorchis felineus. Pathogens, 10(3), 284.

Mumed, H. S., Nigussie, D. R., Musa, K. S., & Demissie, A. A. (2022). In vitro anthelmintic activity and phytochemical screening of crude extracts of three medicinal plants against Haemonchus contortus in sheep at Haramaya Municipal Abattoir, Eastern Hararghe. Journal of Parasitology Research, 2022.

Murali, J., Maheswari, R., Syed Muzammil, M., & Asogan, G. (2014). Anthelmintic activity of leaves extract of Andrographis paniculata Nees. International Journal of Pharmacognosy, 1(6), 404–408.

Nawa, M., Kage-Nakadai, E., Aiso, S., Okamoto, K., Mitani, S., & Matsuoka, M. (2012). Reduced expression of BTBD10, an Akt activator, leads to motor neuron death. Cell Death and Differentiation, 19(8), 1398–1407.

Nawaz, M., Sajid, S. M., Zubair, M., & Ahmed, Z. (2014). In vitro and In vivo Anthelmintic Activity of Leaves of Azadirachta indica, Dalbergia sisso and Morus alba Against Haemonchus contortus. Global Veterinaria, 13(6), 996–1001.

Ntalli, N., Kasiotis, K. M., Baira, E., Stamatis, C. L., & Machera, K. (2020). Nematicidal activity of Stevia rebaudiana (Bertoni) assisted by phytochemical analysis. Toxins, 12(5), 319.

Olmedo-Juárez, A., Jimenez-Chino, A. L., Bugarin, A., Zamilpa, A., Gives, P. M. D., Villa-Mancera, A., López-Arellano, M. A., Olivares-Pérez, J., Delgado-Núñez, E. J. & González-Cortazar, M. (2022). Phenolic acids and flavonoids from Pithecellobium dulce (Robx.) benth leaves exhibit ovicidal activity against Haemonchus contortus. Plants, 11(19), 2555.

Park, I. K., Kim, J., Lee, S. G., Shin, S. C. (2007). Nematicidal Activity of Plant Essential Oils and Components from Ajowan (Trachyspermum ammi), Allspice (Pimenta dioica) and Litsea (Litsea cubeba) Essential Oils Against Pine Wood Nematode (Bursaphelenchus Xylophilus). Journal of Nematology, 39(3), 275-279.

Parodi, D. A., Damoiseaux, R., & Allard, P. (2015). Comprehensive Assessment of Germline Chemical Toxicity Using the Nematode Caenorhabditis elegans. Journal of Visualized Experiments, 7(96), 1–7.

Pradeepa, K., Krishna, V., Kumar, K. G., Thirumalesh, B. V., & Kumar, K. N. (2011). Antibacterial screening of the stem bark and leaf extracts of Litsea glutinosa (Lour.) CB Rob-an ethnomedicinally important tree of the Western Ghats. Pharmacognosy Journal, 3(21), 72-76.

Priscilla, F. X., Amin, M. R., & Rahman, S. (2014). Comparative Study of Neem (Azadirachta indica), Bitter Gourd (Momordica charantia) extract as Herbal Anthelmintic and Albendazole as Chemical Anthelmintic in Controlling Gastrointestinal Nematodes in Goats. IOSR Journal of Agriculture and Veterinary Science, 7(2), 33–37.

Qiao, Y., Zhao, Y., Wu, Q., Sun, L., Ruan, Q., Chen, Y., Wang, M., Duan, J., & Wang, D. (2014). Full toxicity assessment of genkwa flos and the underlying mechanism in nematode Caenorhabditis elegans. PLoS ONE, 9(3), 1–10.

Rabiu, H. & Subhasish, M. (2011), Investigation of In Vitro Anthelmintic activity of Azadirachta indica Leaves, International Journal of Drug Development & Research, 3(4): 94-100.

Rahmann, G., & Seip, H. (2007). Bioactive forage and phytotherapy to cure and control endo-parasite diseases in sheep and goat farming systems–a review of current scientific knowledge. Landbauforschung Völkenrode, (3), 285-295.

Raman, V. K., Rana, A., & Sharma, A. (2018). Phytochemical Analysis & Anthelmintic Activity of Leaves of Leucaena Leucocephala. Article in World Journal of Pharmaceutical Research, 7(11), 822–833.

Raphael, E. (2012). Phytochemical constituents of some leaves extract of Aloe vera and Azadirachta indica plant species. Global Advanced Research Journal of Environmental Science and Toxicology, 1(2), 014-017.

Rizwan, H., Sajid, M., Shamim, A., Abbas, H., Qudoos, A., Maqbool, M., Malik, M., & Amin, Z. (2021). Sheep parasitism and its control by medicinal plants: A review. Parasitologists United Journal, 14(2), 112-121.

Rositawati, I., Nur, I., Osfar, S. and Suyadi, S. (2019) Ethanol extraction of Sambiloto leaves (Andrographis paniculata Nees) and evaluation of its immunomodulatory activity towards gastrointestinal nematode infestation in Ettawah crossbred goats. Livestock Research for Rural Development, 31(191).

Sadaqat Shah, S., Salim Shah, S., Iqbal, A., Ahmed, S., Muhammad Khan, W., Hussain, S., & Li, Z. (2018). Phytochemical screening and antimicrobial activities of red silk cotton tree (Bombax ceiba L.) Physiological responses to salinity. View project Proteins View project Phytochemical screening and antimicrobial activities of red silk cotton tree (Bombax ceiba L.). In Article in Pakistan Journal of Pharmaceutical Sciences (Vol. 1, Issue 3).

Sani, Y. N., Haque, M., Suryati, K., Mohd, K. W., & Khan, A. (2017). Isolation and characterisation of andrographolide from Andrographis paniculata (Burm. F) wall. Ex nees and its total flavonoid effects from Kemaman, Malaysia. International Journal of Pharmaceutical Quality Assurance, 8, 119-124.

Shahlehi, S., Azizi, A., Tengah, A., Amdani, S. N., & Petalcorin, M. I. (2020). Anti-hypertensive vasodilatory action of Gynura procumbens mediated by kaempferol 3-O-rutinoside. F1000Research, 9(1226), 1226.

Sharma, B. K., Loksh, K. R., & Jain, A. P. (2019). Screening of phytochemicals and antioxidant potential of leaves extract of Litsea glutinosa. Journal of Drug Delivery and Therapeutics, 9(4-s), 1214-1217.

Sheeja, K., Guruvayoorappan, C., & Kuttan, G. (2007). Antiangiogenic activity of Andrographis paniculata extract and andrographolide. International immunopharmacology, 7(2), 211-221.

Shewale, S., & Rathod, V. K. (2018). Extraction of total phenolic content from Azadirachta indica or (neem) leaves: Kinetics study. Preparative Biochemistry and Biotechnology, 48(4), 312-320.

Singh, D., Swarnkar, C. P., Khan, F. A., Bhagwan, P. S. K. & Dubey, S. C. (2011). In vitro ovicidal and larvicidal activity of Andrographis paniculata (Kalmegh) leaves on Haemonchus contortus. Indian Journal of Animal Science, 81(2), 155-157.

Soares, A. M. D. S., Araújo, S. A. D., Lopes, S. G., & Costa Junior, L. M. (2015). Anthelmintic activity of Leucaena leucocephala protein extracts on Haemonchus contortus. Revista Brasileira de Parasitologia Veterinária, 24, 396-401.

Tagoe, M., Boakye, Y. D., Agana, T. A., Boamah, V. E., & Agyare, C. (2021). In vitro anthelmintic activity of ethanol stem bark extract of Albizia ferruginea (Guill. & Perr.) Benth. Journal of parasitology research, 2021(1), 6690869.

Tummanichanont, C., Phoungchandang, S., & Srzednicki, G. (2017). Effects of pretreatment and drying methods on drying characteristics and quality attributes of Andrographis paniculata. Journal of food processing and preservation, 41(6), e13310.

Tewari, S. K., Niranjan, A., & Lehri, A. (2010). Variations in yield, quality, and antioxidant potential of kalmegh (Andrographis paniculata Nees) with soil alkalinity and season. Journal of herbs, spices & medicinal plants, 16(1), 41-50.

Umbara, F., Mariya, S., Saepuloh, U., Pamungkas, J. and Suparto, I. H. (2016). Antiretroviral effect of combination of ethanol extract from leaves of Psidium guajava and Andrographis paniculata. International Journal of Agricultural Biosciences, 5(1): 15-18.

Uzzaman, S. (2020). Pharmacological activities of neem (Azadirachta indica): A review. International Journal of Pharmacognosy and Life Science, 1, 38-41.

Vetvicka, V., & Vannucci, L. (2021). Biological properties of andrographolide, an active ingredient of Andrographis Paniculata: A narrative review. Annals of translational medicine, 9(14).

Widaad, A., Zulkipli, I. N., & Petalcorin, M. I. (2022). Anthelmintic effect of Leucaena leucocephala extract and its active compound, mimosine, on vital behavioral activities in Caenorhabditis elegans. Molecules, 27(6), 1875.

Zarza-Albarrán, M. A., Olmedo-Juárez, A., Rojo-Rubio, R., Mendoza-de Gives, P., González-Cortazar, M., Tapia-Maruri, D., Mondragón-Ancelmo, J., García-Hernández, C., Blé-González, E. A. & Zamilpa, A. (2020). Galloyl flavonoids from Acacia farnesiana pods possess potent anthelmintic activity against Haemonchus contortus eggs and infective larvae. Journal of ethnopharmacology, 249, 112402.

Zenebe, S., Feyera, T., & Assefa, S. (2017). In vitro anthelmintic activity of crude extracts of aerial parts of Cissus quadrangularis L. and leaves of Schinus molle L. against Haemonchus contortus. BioMed research international, 2017(1), 1905987.




How to Cite

Shahlehi, S., Kasah, R., Petalcorin, M. I., & Mohamed Najim, M. M. (2024). Phytochemical analysis and anthelmintic activity of Andrographis paniculata, Azadirachta indica, and Litsea elliptica leaves extracts against Caenorhabditis elegans. Journal of Wildlife and Biodiversity, 8(3), 365–388.

Most read articles by the same author(s)