Modeling and prediction of forest fire susceptibility areas based on machine learning methods in semi-arid oak forest
DOI:
https://doi.org/10.5281/zenodo.17381856Keywords:
Forest fire modeling, Random Forest, Support Vector Machine, Semi-arid oak forestAbstract
Fire is the most pervasive factor that destroys forest ecosystems, which has negative ecological, economic, and social consequences. Therefore, examining the changes in the situation of the region in terms of fire occurrence danger and also the parameters affecting it will be very useful in the field of fire risk management and control approaches. This is especially true in semi-arid oak forests. The current research process has been completed in several sections; First, 13 parameters including topographical factors (height, slope direction, slope), climatic factors (rainfall, temperature, wind direction, wind speed), biological factors (vegetation cover (NDVI) and soil surface moisture ((normal difference moisture indices (NDWI) and soil surface moisture index (LSWI)) and human-made factors (distance from residential areas, distance from the road, distance from agricultural lands, distance from the forest) as effective factors in forest fire risk were assessed and modulated based on three machine learning methods including GLM, RF and SVM. The raster-based maps related to the desired criteria have been prepared using integrated geographic information systems and remote sensing. In the following, using the data related to the fire occurrence, the forest fire risk map was determined. The model’s accuracy was evaluated using AUC in the ROC curve which indicated RF (AUC = 0.994) as the best model in fire detection compared with GLM and SVM models (AUC_GLM = 0.983; AUC_SVM = 0.971). Based on the results of the RF model, 33.95 and 18.84% of the studied areas were categorized in the low and high fire risk classes. The investigation of the factors affecting the occurrence of fire showed that human-made factors (distance from residential areas, distance from agricultural lands), climatic factors (temperature, wind speed, relative humidity), and topographical factors (elevation) played a more important role in places with a history of fire. Therefore, to reduce the number of fires and damages caused by them. It is necessary to pay attention to the reasons and motivations of the factors that cause fire, to reduce and prevent the opportunity of fire as much as possible.
References
Abatzoglou, J.T., Battisti, D.S., Williams, A.P., Hansen, W.D., Harvey, B.J., & Kolden, C.A. (2021). Projected increases in western US forest fire despite growing fuel constraints. Communications Earth & Environment, 2(1), pp.1-8.
Abdollahi, A., & Yebra, M. (2023). Forest fuel type classification: Review of remote sensing techniques, constraints and future trends. Journal of Environmental Management, 342, p.118315.
Abedi, M., Omidipour, R., Hosseini, S.V., Bahalkeh, K., & Gross, N. (2022). Fire disturbance effects on plant taxonomic and functional β‐diversity mediated by topographic exposure. Ecology and Evolution, 12(1), p.e8552.
Agbeshie, A.A., Abugre, S., Atta-Darkwa, T., & Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33(5), pp.1419-1441.
Albar, I., Jaya, I.N.S., Saharjo, B.H., Kuncahyo, B., & Vadrevu, K.P. (2018). Spatio-temporal analysis of land and forest fires in Indonesia using MODIS active fire dataset. Land- atmospheric research applications in South and Southeast Asia, pp.105-127.
Ardakani, A.S., Zoej, M.J.V., Mohammadzadeh, A., & Mansourian, A. (2010). Spatial and temporal analysis of fires detected by MODIS data in northern Iran from 2001 to 2008. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4(1), pp.216-225.
Argañaraz, J.P., Cingolani, A.M., Bellis, L.M., & Giorgis, M.A. (2020). Fire incidence along an elevation gradient in the mountains of central Argentina.
Ammann, M., Boll, A., Rickli, C., Speck, T., Holdenrieder, T. (2009). Significance of tree root decomposition for shallow landslides. For. Snow Landscape Res, 82 (1), 79–94.
Adab, H., Devi Kanniah, K., & Solaimani, K. (2012). Modeling forest fire risk in the northeast of Iran using remote sensing and GIS techniques. Natural Hazard 65(3): 1723-1743.
Amiri, T., Banj Shafiei, A., Erfanian, M., Hosseinzadeh, O., & Beygi Heidarlou, H. (2017). Determining of effective criteria in locating firefighting station in forest. Journal of Forest Research and Development, 2(4):379-393. (In Persian).
Aleemahmoodi, S.S., Feghhi, J., Jabbarian, A.B., Danehkar, A., & Attarod, P. (2013). Applying the Regression Models to Assess the Influences of Climate Factors on Forest Fires (Case Study: Izeh). Tehran, J. Nat. Rec., 2: 66. 191-201. (in Persian).
Aleemahmoodi Sarab, S., Feghhi., J., Jabbarian Amiri, B.A., Danehkar & Attarod, P. (2014). Applying the regression models to assess the influences of climate factors on forest fires (case study: Izeh). Journal of Natural Environment (IranianJournal of Natural Rssources), 66(2): 191-201. (In Persian).
Barati Jozan, M.M., Mohammadi, A., Lotfata, A., Tabesh, H., & Kiani, B. (2024). Spatio-temporal analysis of fire incidences in urban context: the case study of Mashhad, Iran. Spatial Information Research, 32(1), pp.47-61.
Bentsi-Enchill, F., Damptey, F.G., Pappoe, A.N.M., Ekumah, B. & Akotoye, H.K. (2022). Impact of anthropogenic disturbance on tree species diversity, vegetation structure and carbon storage potential in an upland evergreen forest of Ghana, West Africa. Trees, Forests and People, 8, p. 100238.
Bolaño-Díaz, S., Camargo-Caicedo, Y., Soro, T.D., N’Dri, A.B., & Bolaño-Ortiz, T. (2022). Spatio-temporal characterization of fire using MODIS data (2000–2020) in Colombia. Fire, 5(5), p.134.
Bullock, E.L., & Woodcock, C.E. (2021). Carbon loss and removal due to forest disturbance and regeneration in the Amazon. Science of The Total Environment, 764, p.142839.
Brun, C., Margalef, T., Cort' es, A. (2013). Coupling Diagnostic and Prognostic Models to a Dynamic Data Driven Forest Fire Spread Prediction System, Procedia .Computer Science 18, 1851-1860.
Bowman MJSD, Moreira-Munoz, A., Kolden, CA., Chavez, RO., Munoz, A.A., Salinas. F., Gonzalez-Reyes, A., Rocco, R., de la Barrera, F., Williamson, G.J., Borchers, N., Cifuentes, L.A., Abatzoglou, JT., Johnston, F.H. (2018). Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires. Ambio, https://doi.org/10. 1007/s13280-018-1084-1.
Chang, Y., Zhu, Z., Bu, R., Chen, H., Feng, Y., Li, Y., Hu, Y., & Wang, Z. (2013). Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28, pp.1989-2004.
Chen, D., Pereira, J.M., Masiero, A., & Pirotti, F. (2017). Mapping fire regimes in China using MODIS active fire and burned area data. Applied Geography, 85, pp.14-26.
Cheng, S., Jin, Y., Harrison, S.P., Quilodrán-Casas, C., Prentice, I.C., Guo, Y.K., & Arcucci, R. (2022). Parameter flexible wildfire prediction using machine learning techniques: Forward and inverse modelling. Remote Sensing, 14(13), p.3228.
Cencerrado, A., Rodriguez, R., Cortes, A., Margalef, T. (2012). Urgency versus accuracy: Dynamic Data Driven ,application system for natural hazard management. Numerical analysis and modeling, 9,2,432-448.
Cochrane, M. A. (2003). Fire science for rainforests. Nature 421: 913-919.
Cortez, P., & Morais, A. (2007). A Data mining approach to predict forest fires using meteorological data. In Proceedings of the 13 th Portugese Conference on Artificial Intelligence, PP. 512-523.
Clarke, H., Nolan, R.H., De Dios, V.R., Bradstock, R., Griebel, A., Khanal, S., & Boer, M.M. (2022). Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nature Communications, 13(1), p.7161.
Chamandeh, J., Alvaninejad, S., & Gholami, P. (2017). A survey of composition and diversity of herbaceous species after a fire in Persian Oak forests of Southern Zagros. Journal of Wood & Forest Science and Technology, 24(3): 1-15. (In Persian) Croft, T.A. 1973. Burning waste gas in oil fields. Nature, 245: 375-376.
Collins, L., Griffioen, P., Newell, G., & Mellor, A. (2018). The utility of Random Forests for wildfire severity mapping. Remote sensing of Environment, 216, pp.374-384.
D’Este, M., Ganga, A., Elia, M., Lovreglio, R., Giannico, V., Spano, G., Colangelo, G., Lafortezza, R. and Sanesi, G. (2020). Modeling fire ignition probability and frequency using Hurdle models: A cross-regional study in Southern Europe. Ecological Processes, 9, pp.1-14.
De Angeli, S., Malamud, B.D., Rossi, L., Taylor, F.E., Trasforini, E., & Rudari, R. (2022). A multi-hazard framework for spatial-temporal impact analysis. International Journal of Disaster Risk Reduction, 73, p.102829.
Dickson, B.G., Prather, J.W., Xu, Y., Hampton, H.M., Aumack, E.N., & Sisk, T.D. (2006). Mapping the probability of large fire occurrence in northern Arizona, USA. Landscape Ecology, 21, pp.747-761.
Digavinti, J., & Manikiam, B. (2021). Satellite monitoring of forest fire impact and regeneration using NDVI and LST. Journal of Applied Remote Sensing, 15(4), pp.042412-042412.
Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A., & Leisch, M.F. (2009). Package ‘e1071’. R Software package, avaliable at http://cran. rproject. org/web/packages/e1071/index. Html.
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., Marquéz, J.R.G., Gruber, B., Lafourcade, B., Leitão, P.J. & Münkemüller, T. ( 2013). Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36(1), pp.27-46.
Dufek, N.A., Vermeire, L.T., Waterman, R.C., & Ganguli, A.C. (2014). Fire and nitrogen addition increase forage quality of Aristida purpurea. Rangeland Ecology & Management, 67(3), pp.298-306.
DeCastro, E. A., & Kauffman, J. B. (1998). A vegetation gradient of above ground biomass, root and consumption by fire. Journal of Tropical Ecology, 14(3)263-283.
Elia, M., Giannico, V., Spano, G., Lafortezza, R., & Sanesi, G. (2020). Likelihood and frequency of recurrent fire ignitions in highly urbanised Mediterranean landscapes. International journal of wildland fire, 29(2), pp.120-131.
Eskandari, S., Pourghasemi, H.R., & Tiefenbacher, J.P. (2020). Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger. Forest Ecology and Management, 473, p.118338.
Estes, B.L., Knapp, E.E., Skinner, C.N., Miller, J.D., & Preisler, H.K. (2017). Factors influencing fire severity under moderate burning conditions in the Klamath Mountains, northern California, USA. Ecosphere, 8(5), p.e01794.
Flannigan, M., Cantin, A.S., De Groot, W.J., Wotton, M., Newbery, A., & Gowman, L.M. (2013). Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294, pp.54-61.
Eskandari, S. (2017). Modeling methods and fire risk assessment in the forests of the world and Iran. Journal of Man and Environment, 42: 91-110. (In Farsi).
Eskandari, S., Chuvieco, E. (2015). Fire danger assessment in Iran based on geospatial information. Int J Appl Earth Obs Geoinf, 42:57–64.
Eskandari, S., Ravanbakhsh, H., Ahangaran, Y., Rezapour, Z., & Pourghasemi, H. R. (2022). Effect of climate change on fire regimes in natural resources of northern Iran: investigation of spatiotemporal relationships using regression and data mining models. Natural Hazards, 119(1), 497-521.
Foroutan, S., & Islamzadeh, N. (2023). Investigation of Fire in Rangelands and Forests of Mazandaran Using Landsat Images. Environmental Researches, 13(26), pp.373-382.
Gao, B., Shan, Y., Liu, X., Yin, S., Yu, B., Cui, C., & Cao, L. (2024). Prediction and driving factors of forest fire occurrence in Jilin Province, China. Journal of Forestry Research, 35(1), p.21.
Ghanbari Motlagh, M., Abbasnezhad Alchin, A., & Daghestani, M. (2022). Detection of high fire risk areas in Zagros Oak forests using geospatial methods with GIS techniques. Arabian Journal of Geosciences, 15(9), p.835.
Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S.R., Tiede, D., & Aryal, J. (2019). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sensing, 11(2), p.196.
Girona-García, A., Vieira, D.C., Silva, J., Fernández, C., Robichaud, P.R., & Keizer, J.J. (2021). Effectiveness of post-fire soil erosion mitigation treatments: A systematic review and meta-analysis. Earth-Science Reviews, 217, p.103611.
Gonçalves, L., Subtil, A., Oliveira, M.R., & de Zea Bermudez, P. (2014). ROC curve estimation: An overview. REVSTAT-Statistical journal, 12(1), pp.1-20.
Gregorutti, B., Michel, B., & Saint-Pierre, P. (2017). Correlation and variable importance in random forests. Statistics and Computing, 27, pp.659-678.
Grömping, U. (2009). Variable importance assessment in regression: linear regression versus random forest. The American Statistician, 63(4), pp.308-319.
Giglio, L. (2010). MODIS Collection 5 Active Fire Product User's Guide Version 2.4, Science Systems and Applications, Inc. University of Maryland, Department of Geography, 61 p.
Hawbaker, T.J., Radeloff, V.C., Stewart, S.I., Hammer, R.B., Keuler, N.S., & Clayton, M.K. (2013). Human and biophysical influences on fire occurrence in the United States. Ecological applications, 23(3), pp.565-582.
Hawbaker, T.J., Radeloff, V.C., Syphard, A.D., Zhu, Z., & Stewart, S.I. (2008). Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment, 112(5), pp.2656-2664.
Heidarlou, H.B., Shafiei, A.B., Erfanian, M., Tayyebi, A., & Alijanpour, A. (2020). Underlying driving forces of forest cover changes due to the implementation of preservation policies in Iranian northern Zagros forests. International Forestry Review, 22(2), pp.241-256.
Heidarlou, H.B., Shafiei, A.B., Erfanian, M., Tayyebi, A., & Alijanpour, A. (2019). Effects of preservation policy on land use changes in Iranian Northern Zagros forests. Land use policy, 81, pp.76-90.
Henareh Khalyani, A., Falkowski, M.J., & Mayer, A.L. (2012). Classification of Landsat images based on spectral and topographic variables for land-cover change detection in Zagros forests. International journal of remote sensing, 33(21), pp.6956-6974.
Heydari, M., & Faramarzi, M. (2015). Short term effects of fire with different intensities on the composition and diversity of soil seed bank in the Zagros forest ecosystem. Sirvan, Applied Ecology, 3(9):57-68. (In Persian).
Hemmatboland, I., Akbarinia, M., & Banej Shafiei, A. ( 2010). The effect of fire on some soil chemical properties of oak forests in Marivan region. Iranian Journal of Forest and Poplar Research, 18(2): 205-218. (In Persian).
Hong, H., Naghibi, S.A., Moradi Dashtpagerdi, M., Pourghasemi, H.R., Chen, W. (2017). A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China. Arabian Journal of Geosciences, 10: 1- 14. Doi: https://doi.org/10.1007/s12517-017-2905-4.
Ibrahim, A.M., & Nasser, R.H.A. (2017). Comparison between inverse distance weighted (IDW) and Kriging. International of Science and Research, 6(11), pp.249-254.
Jaafari, A., Rahmati, O., Zenner, E.K., & Mafi-Gholami, D. (2022). Anthropogenic activities amplify wildfire occurrence in the Zagros eco-region of western Iran. Natural Hazards, 114(1), pp.457-473.
Jahdi, R., Salis, M., Alcasena, F.J., Arabi, M., Arca, B., & Duce, P. (2020). Evaluating landscape-scale wildfire exposure in northwestern Iran. Natural Hazards, 101, pp.911-932.
Janbaz ghobadi, Gh.R. (2019). Investigation of forest fire hazard areas in Golestan province based on fire risk system index (FRSI) using the technique (GIS). Journal of Spatial Analysis Environmental Hazarts, 6(300631):89-102.
Kalogiannidis, S., Chatzitheodoridis, F., Kalfas, D., Patitsa, C., & Papagrigoriou, A. (2023). Socio-psychological, economic and environmental effects of forest fires. Fire, 6(7), p.280.
Keeley, J.E., & Syphard, A.D. (2019). Twenty-first century California, USA, wildfires: fuel-dominated vs. wind-dominated fires. Fire Ecology, 15(1), pp.1-15.
Khosravi, S., Maleknia, R., & Khedrizadeh, M. (2017). Understanding the contribution of non-timber forest products to the livelihoods of forest dwellers in the northern Zagros in Iran. Small-scale Forestry, 16, pp.235-248.
Kim, J.H. (2019). Multicollinearity and misleading statistical results. Korean journal of anesthesiology, 72(6), pp.558-569.
Krueger, E.S., Levi, M.R., Achieng, K.O., Bolten, J.D., Carlson, J.D., Coops, N.C., Holden, Z.A., Magi, B.I., Rigden, A.J., & Ochsner, T.E. (2022). Using soil moisture information to better understand and predict wildfire danger: a review of recent developments and outstanding questions. International journal of wildland fire, 32(2), pp.111-132.
Lagomarsino, D., Tofani, V., Segoni, S., Catani, F., & Casagli, N. (2017). A tool for classification and regression using random forest methodology: Applications to landslide susceptibility mapping and soil thickness modeling. Environmental Modeling & Assessment, 22, pp.201-214.
Laschi, A., Foderi, C., Fabiano, F., Neri, F., Cambi, M., Mariotti, B., & Marchi, E. (2019). Forest road planning, construction and maintenance to improve forest fire fighting: a review. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 40(1), pp.207-219.
Liedloff, A. C., Coughenourb, M. B., Ludwiga, J. A., & Dyer, R. (2001). Modelling the tradeoff between fire and grazing in a tropical savanna landscape, northern Australia. Environment International, 27: 173–180.
Mackey, B., Kormos, C.F., Keith, H., Moomaw, W.R., Houghton, R.A., Mittermeier, R.A., Hole, D., & Hugh, S., (2020). Understanding the importance of primary tropical forest protection as a mitigation strategy. Mitigation and adaptation strategies for global change, 25(5), pp.763-787.
Mahdavi, A., Wunder, S., Mirzaeizadeh, V., & Omidi, M. (2019). A hidden harvest from semi-arid forests: Landscape-level livelihood contributions in Zagros, Iran. Forests, Trees and Livelihoods, 28(2), pp.108-125.
Mahmoudi, B., Zenner, E., Mafi-Gholami, D., & Eshaghi, F. (2023). Livelihood Analysis and a New Inferential Model for Development of Forest-Dependent Rural Communities. Sustainability, 15(11), p.9008.
Michael, Y., Helman, D., Glickman, O., Gabay, D., Brenner, S., & Lensky, I.M. (2021). Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Science of The Total Environment, 764, p.142844.
Milanović, S., Marković, N., Pamučar, D., Gigović, L., Kostić, P., & Milanović, S.D. (2020). Forest fire probability mapping in eastern Serbia: Logistic regression versus random forest method. Forests, 12(1), p.5.
Mirzaei, J., Heydari, M., Omidipour, R., Jafarian, N., & Carcaillet, C. (2023). Decrease in soil functionalities and herbs’ diversity, but not that of arbuscular mycorrhizal fungi, linked to short fire interval in semi-arid oak forest ecosystem, west Iran. Plants, 12(5), p.1112.
Mo, L., Zohner, C.M., Reich, P.B., Liang, J., De Miguel, S., Nabuurs, G.J., Renner, S.S., van den Hoogen, J., Araza, A., Herold, M., & Mirzagholi, L. (2023). Integrated global assessment of the natural forest carbon potential. Nature, 624(7990), pp.92-101.
Moghli, A., Santana, V.M., Baeza, M.J., Pastor, E., & Soliveres, S. (2022). Fire recurrence and time since last fire interact to determine the supply of multiple ecosystem services by Mediterranean forests. Ecosystems, 25(6), pp.1358-1370.
Moradi, A., & Shabanian, N. (2023). Sacred groves: A model of Zagros forests for carbon sequestration and climate change mitigation. Environmental Conservation, 50(3), pp.163-168.
Motazeh, A.G., Ashtiani, E.F., Baniasadi, R., & Choobar, F.M. (2013). Rating and mapping fire hazard in the hardwood Hyrcanian forests using GIS and expert choice software. Acknowledgement to reviewers of the manuscripts submitted to Forestry Ideas in, 2013, p.141.
Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS journal of photogrammetry and remote sensing, 66(3), pp.247-259.
Maeda, E. E., Formaggio, R.A., Shimabukuro, E.Y., Arcoverde, G.F.B., & Hansen, C.M. (2009) .Predicting forest fire in the Brazilian Amazon using MODIS imagery and artificial neural networks. International Journal of Applied Earth Observation and Geoinformation, 11.265-272.
Nie, F., Zhu, W., & Li, X. (2020). Decision Tree SVM: An extension of linear SVM for non-linear classification. Neurocomputing, 401, pp.153-159.
Noroozi, F., Ghanbarian, G., Safaeian, R., & Pourghasemi, H.R. (2024). Forest fire mapping: a comparison between GIS-based random forest and Bayesian models. Natural Hazards, pp.1-24.
Novo, A., Fariñas-Álvarez, N., Martínez-Sánchez, J., González-Jorge, H., Fernández-Alonso, J.M., & Lorenzo, H. (2020). Mapping forest fire risk—a case study in Galicia (Spain). Remote Sensing, 12(22), p.3705.
Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A., & Pereira, J.M. (2012). Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275, pp.117-129.
Omidipour, R., Moradi, H.R., Arekhi, S. (2013). Comparison of pixel-based and object-oriented classification methods in land use mapping using satellite imagery. Iranian Journal of Remote Sensing & GIS, 5(3), 99-110.
Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, pp.180-197.
Parajuli, A., Gautam, A.P., Sharma, S.P., Bhujel, K.B., Sharma, G., Thapa, P.B., Bist, B.S., & Poudel, S. (2020). Forest fire risk mapping using GIS and remote sensing in two major landscapes of Nepal. Geomatics, Natural Hazards and Risk, 11(1), pp.2569-2586.
Park, K., Kim, J.M., & Jung, D. (2018). GLM‐based statistical control r‐charts for dispersed count data with multicollinearity between input variables. Quality and Reliability Engineering International, 34(6), pp.1103-1109.
Pham, B.T., Jaafari, A., Avand, M., Al-Ansari, N., Dinh Du, T., Yen, H.P.H., Phong, T.V., Nguyen, D.H., Le, H.V., Mafi-Gholami, D., & Prakash, I. (2020). Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry, 12(6), p.1022.
Raziei, T., & Pereira, L.S. (2013). Spatial variability analysis of reference evapotranspiration in Iran utilizing fine resolution gridded datasets. Agricultural Water Management, 126, pp.104-118.
RColorBrewer, S., & Liaw, M.A. (2018). Package ‘randomforest’. University of California, Berkeley: Berkeley, CA, USA.
Romero-Calcerrada, R., Novillo, C.J., Millington, J.D., & Gomez-Jimenez, I. (2008). GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape ecology, 23, pp.341-354.
Safari, E., Moradi, H., Seim, A., Yousefpour, R., Mirzakhani, M., Tegel, W., Soosani, J., & Kahle, H.P. (2022). Regional drought conditions control Quercus Brantii Lindl. growth within contrasting forest stands in the central Zagros mountains, Iran. Forests, 13(4), p.495.
Sazib, N., Bolten, J.D., & Mladenova, I.E. (2021). Leveraging NASA soil moisture active passive for assessing fire susceptibility and potential impacts over Australia and California. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, pp.779-787.
Schwartz, M.W., Butt, N., Dolanc, C.R., Holguin, A., Moritz, M.A., North, M.P., Safford, H.D., Stephenson, N.L., Thorne, J.H., & van Mantgem, P.J. (2015). Increasing elevation of fire in the Sierra Nevada and implications for forest change. Ecosphere, 6(7), pp.1-10.
Singh, K.R., Neethu, K.P., Madhurekaa, K., Harita, A., & Mohan, P. (2021). Parallel SVM model for forest fire prediction. Soft Computing Letters, 3, p.100014.
Singh, P., & Verma, P. (2019). A comparative study of spatial interpolation technique (IDW and Kriging) for determining groundwater quality. GIS and geostatistical techniques for groundwater science, pp.43-56.
Singh, S. (2022). Forest fire emissions: A contribution to global climate change. Frontiers in Forests and Global Change, 5, p.925480.
Sivrikaya, F., & Küçük, Ö. (2022). Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecological Informatics, 68, p.101537.
Souaissi, Z., Ouarda, T.B., & St-Hilaire, A. (2023). Non-parametric, semi-parametric, and machine learning models for river temperature frequency analysis at ungauged basins. Ecological Informatics, 75, p.102107.
Sun, W., & Liu, X. (2020). Review on carbon storage estimation of forest ecosystem and applications in China. Forest Ecosystems, 7, pp.1-14.
Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P., & Feuston, B.P. (2003). Random forest: a classification and regression tool for compound classification and QSAR modeling. Journal of chemical information and computer sciences, 43(6), pp.1947-1958.
Syphard, A.D., & Keeley, J.E. (2015). Location, timing and extent of wildfire vary by cause of ignition. International Journal of Wildland Fire, 24(1), pp.37-47.
Syphard, A.D., Radeloff, V.C., Keuler, N.S., Taylor, R.S., Hawbaker, T.J., Stewart, S.I., & Clayton, M.K. (2008). Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17(5), pp.602-613.
Sadeghifar, M., Beheshti Ale Agha, A., & Pourreza, M. (2016). Variability of Soil Nutrients and Aggregate Stability in Different Times after Fire in Zagros Forests (Case Study: Paveh Forests), Ecology of Iranian Forests, 4(8): 19-27. (In Persian).
Sarkargar Ardakani, A. (2007). Analysis of radiometric- spatial characteristics of fire and its Application in identification and separation by remote sensing data. PhD thesis, Faculty of Engineering, Khaje- Nasir- Toosi University.
Seidl, R., Spies, T.A., Peterson, D.L., Stephens, S.L., Hicke, J.A. (2016). Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. Journal of Appl. Ecol. 53, 120–129.
Shariatnejad, S. (2008). Role of Forest, Range & watershed Management Organization in development Management of Country Wood Industry. Gorgan University, page 2.
Stolle, F., Chomitz, K.M., Lambin, E.F., & Tomich, T.P. (2003). Human ecological intervention and the role of forest fires in human ecology. Forest Ecology and Management, 179: 277-292.
Thapa, S.K., de Jong, J.F., Hof, A.R., Subedi, N., Joshi, L.R., & Prins, H.H. (2022). Fire and forage quality: Postfire regrowth quality and pyric herbivory in subtropical grasslands of Nepal. Ecology and Evolution, 12(4), p.e8794.
Wanchuk, M.R., McGranahan, D.A., Sedivec, K.K., Berti, M., Swanson, K.C., & Hovick, T.J. (2024). Improving forage nutritive value and livestock performance with spatially-patchy prescribed fire in grazed rangeland. Agriculture, Ecosystems & Environment, 368, p.109004.
Wang, H., Zhang, K., Qin, Z., Gao, W., & Wang, Z. (2024). Refining Ecological Techniques for Forest Fire Prevention and Evaluating Their Diverse Benefits. Fire, 7(4), p.129.
Warton, D.I., Lyons, M., Stoklosa, J., & Ives, A.R. (2016). Three points to consider when choosing a LM or GLM test for count data. Methods in Ecology and Evolution, 7(8), pp.882-890.
Wienk, C. L., Sieg, C. H., & McPherson, G. R. (2004). Evaluating the role of cutting treatments, fire and soil seed banks in an experimental framework in ponderosa pine forests of the Black Hills, South Dakota. Forest Ecology and Management, 192(2-3), 375-393.
Wu, Z., He, H. S., Fang, L., Liang, Y., & Parsons, R. A. (2018). Wind speed and relative humidity influence spatial patterns of burn severity in boreal forests of northeastern China. Annals of Forest Science, 75, 1-13.
Zhao, M., Yang, J., Zhao, N., Liu, Y., Wang, Y., Wilson, J.P., & Yue, T. (2019). Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013. Forest Ecology and Management, 448, pp.528-534.
Zittis, G., Almazroui, M., Alpert, P., Ciais, P., Cramer, W., Dahdal, Y., Fnais, M., Francis, D., Hadjinicolaou, P., Howari, F., & Jrrar, A. (2022). Climate change and weather extremes in the Eastern Mediterranean and Middle East. Reviews of geophysics, 60(3), p.e2021RG000762.
Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A., Smith, G.M., Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., & Smith, G.M. (2009). GLM and GAM for count data. Mixed effects models and extensions in ecology with R, pp.209-243.
Zumbrunnen, T., Pezzattic, G.B., Menéndezd, P., Bugmann, H., Bürgia, M., Conederac, M. (2011). Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland. Forest Ecology and Management, 261: 2188- 2199.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.