Using bacteriocin as an alternative preservative: A promising approach for Listeria monocytogenes control in canned foods and other food products

Authors

  • Athraa Oudah Hussein Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Nurul Aqilah Binti Mohd Zaini Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Shazilah Kamaruddin Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Ayesha Firdose Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Muhamad Firdaus Syahmi Sam-on Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Ahmed Abdulkareem Najm Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
  • Wan Syaidatul Aqma Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia

DOI:

https://doi.org/10.5281/zenodo.17386882

Keywords:

L. monocytogenes, Lactobacillus spp., bacteriocins, canned food, food biosafety

Abstract

Due to the increasing demand for Ready-to-eat (RTE) foods that undergo minimal processing, there is a need for alternative methods of preservation that can ensure food safety without the use of chemicals or high temperatures. Listeria monocytogenes is a major safety concern in RTE food products. This pathogen can increase and multiply, simultaneously generating different virulence components like listeriolysin O, transcriptional activator, actin, and internalin. Additionally, the extended processing time and extended shelf life associated with certain ready-to-eat (RTE) foods, like cured meat and dairy products, create favorable conditions for the growth and proliferation of L. monocytogenes within the food itself. The review focuses on exploring the efficiency of bacteriocin and their potential to effectively manage L. monocytogenes within biofilms found in food production facilities. By targeting biofilms, the innovative techniques using bacteriocins have the potential to control and prevent L. monocytogenes contamination, thereby improving food safety standards in food industries.

References

Alam, M., Islam, M. S., Jahan, M. I., et al. (2025). A novel virulent core genome multilocus sequence type CT 11424 of Listeria monocytogenes isolate causing stillbirth in Bangladesh. BMC Microbiology, 25, 61.

Abouloifa, H., Rokni, Y., Hasnaoui, I., Bellaouchi, R., Gaamouche, S., Ghabbour, N., Karboune, S., Ben Salah, R., Brasca, M., D’hallewin, G., Saalaoui, E., & Asehraou, A. (2022). Characterization of antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61 and their application as a biopreservative agent. Brazilian Journal of Microbiology, 53, 1501–1513.

Alexander, J. T., & Matthew, J. S. (2019). Persistent and sporadic Listeria monocytogenes strains do not differ when growing at 37 °C, in the planktonic state, under different food-associated stresses or energy sources. BMC Microbiology, 19, 257.

Alexis, S., Kamel, A., Raphaël, E., & Duval. (2020). Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms, 8, 639.

Angelo, C., Pierluigi D. C., Emanuela Z., Sergio G., & Adriana, I. (2016). A look inside the Listeria monocytogenes biofilms extracellular matrix. Microorganisms, 4, 22.

Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100, 2939–2951.

Autret, N., Raynaud, C., Dubail, I., Berche, P., & Charbit, A. (2003). Identification of the agr locus of Listeria monocytogenes: Role in bacterial virulence. Infection and Immunity, 71, 4463–4471.

Avalos Vizcarra, I., Vahid, H., Philip, K., Stefanie, M., Stefan, S., Markus, A., Martin, A., & Viola, V. (2016). How type 1 fimbriae help Escherichia coli to evade extracellular antibiotics. Scientific Reports, 6, 1–13.

Balciunas, E. M., Casilo, Matínez, F. A., Todorov, S. D., Franco, B. D. G. M., Converti, A., & Oliveira, R. P. D. S. (2013). Novel biotechnological applications of bacteriocins: A review. Food Control, 32(1), 134–142.

Barbosa, A. A. T., De Melo, M. R., Da Silva, C. M. R., Jain, S., & Dolabella, S. S. (2021). Nisin resistance in Gram-positive bacteria and approaches to circumvent resistance for successful therapeutic use. Critical Reviews in Microbiology, 47, 376–385.

Barmana, S., Ranjan, G., & Narayan, C. M. (2018). Production optimization of the broad-spectrum bacteriocin of three strains of Lactococcus lactis isolated from homemade buttermilk. Annals of Agrarian Science, 16(3), 286–296.

Beata, L., Jacek, O., & Kinga, W. (2022). Listeria monocytogenes — how this pathogen survives in food-production environments? Frontiers in Microbiology, 26, 13:866462.

Borucki, M. K., Kim, S. H., Call, D. R., Smole, S. C., & Pagotto, F. (2004). Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. Journal of Clinical Microbiology, 42, 5270–527.

Borucki, M. K., Peppin, J. D., White, D., Loge, F., & Call, D. R. (2003). Variation in biofilm formation among strains of Listeria monocytogenes. Applied and Environmental Microbiology, 69, 7336–7342.

Bonsaglia, E. C. R., Silva, N. C. C., Fernandes Júnior, & Araújo Júnior, A. J. P. (2014). Production of biofilm by Listeria monocytogenes in different materials and temperatures. Food Control, 35(1), 386–389.

Branchu, P., Hindré, T., Fang, X., Thomas, R., Gomelsky, M., & Claret, L. (2013). The c-di-GMP phosphodiesterase VmpA, absent in Escherichia coli K12 strains, affects motility and biofilm formation in the enterohemorrhagic E. coli O157:H7 serotype. International Journal of Food Microbiology, 165, 134–143.

Byun, K. H., Han, S. H., Choi, M. W., Kim, B. H., Park, S. H., & Ha, S. D. (2022). Biofilm eradication ability of phage cocktail against Listeria monocytogenes biofilms formed on food contact materials and effect on virulence-related genes and biofilm structure. Food Research International, 157, 111367.

Cabedo, L., Barrot, L. P. I., & Canelles, A. T. I. (2008). Prevalence of Listeria monocytogenes and Salmonella in ready-to-eat food in Catalonia, Spain. Journal of Food Protection, 71(4), 855–859.

Castrica, M., Andoni, E., Intraina, I., Curone, G., Copelotti, E., Massacci, F. R., Terio, V., & Colombo, S., & Balzaretti, C. M. (2021). Prevalence of Listeria monocytogenes and Salmonella spp. in different ready-to-eat foods from large retailers and canteens over 2 years in northern Italy. International Journal of Environmental Research and Public Health, 18(20), 10568.

Cavicchioli, V., Camargo, A., Todorov, S., & Nero, L. (2017). Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with anti-listerial activity isolated from Brazilian artisanal cheese. Journal of Dairy Science, 100, 2526–2535.

CDC. (2012). Foodborne Diseases Active Surveillance Network (Foodnet): Foodnet surveillance report (Final report). U.S. Department of Health and Human Services, CDC.

Chang, Y., Gu, W., Zhang, F., & McLandsborough, L. (2013). Disruption of lmo1386, a putative DNA translocase gene, affects biofilm formation of Listeria monocytogenes on abiotic surfaces. International Journal of Food Microbiology, 161(3), 158–163.

Chen, L.-H., Köseoğlu, V. K., Güvener, Z. T., Myers-Morales, T., Reed, J. M., D’Orazio, S. E. F., et al. (2014). Cyclic di-GMP-dependent signaling pathways in the pathogenic firmicute Listeria monocytogenes. PLoS Pathogens, 10, e100430.

Chau, M. L., Kyaw, T. A., Hapuarachchige, C. H., Pei Sze, V. L., Pei Ying, L., Joanne, S. L. K., Youming, N., Hooi, M. Y., Hyun-Gyun, Y., Ramona, A. G., & Lee, C. N. (2017). Microbial survey of ready-to-eat salad ingredients sold at retail reveals the occurrence and persistence of Listeria monocytogenes sequence types 2 and 87 in pre-packed smoked salmon. BMC Microbiology, 17, 46.

Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: Safe, natural antimicrobials for food preservation. International Journal of Food Microbiology, 71(1), 1–20.

Coelhoet, C., Brown, L., Maryam, M., Vij, R., Smith, D. F. Q., Burnet, M. C., Kyle, J. E., Heyman, H. M., Ramirez, J., & Prados-Rosales, R. (2019). Listeria monocytogenes virulence factors, including listeriolysin O, are secreted in biologically active extracellular vesicles. Journal of Biological Chemistry, 294, 1202–1217.

Couvert, O., Divanac’h, M. L., Lochardet, A., Thuault, D., & Huchet, V. (2019). The effect of oxygen concentration on bacterial growth rates. Food Microbiology, 77, 21–25.

Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777–788.

Cottr, P. D., Ross, R. P., & H. I. L. L, C. (2013). Bacteriocins - a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105.

Crowe, W., Elliott, C. T., & Green, B. D. (2019). A review of the in vivo evidence investigating the role of nitrite exposure from processed meat consumption in the development of colorectal cancer. Nutrients, 11, 2673.

Da Silva, S. S., Vitolo, M., González, J. M. D., & de Souza, O. R. P. (2014). Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International, 64, 527–536.

Da Costa, R. J., Voloski, F. L., Mondadori, R. G., Duval, E. H., & Fiorentini, Â. M. (2019). Preservation of meat products with bacteriocins produced by lactic acid bacteria isolated from meat. Journal of Food Quality, 2019, 4726510.

Daba, G. M., & Elkhateeb, W. A. (2020). Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. Biocatalysis and Agriculture Biotechnology, 28, 101750.

Darbandi, A., Asadi, A., & Mahdizade, A. M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36, e24093.

Doijad, S. P., Barbuddhe, S. B., Garg, S., Poharkar, K. V., Kalorey, D. R., Kurkure, N. V., Rawool, D. B., & Chakraborty, T. (2015). Biofilm-forming abilities of Listeria monocytogenes serotypes isolated from different sources. PLoS ONE, 10, e0137046.

Drider, D., Bendali, F., Naghmouchi, K., & Chikindas, M. L. (2016). Bacteriocins: Not only antibacterial agents. Probiotics and Antimicrobial Proteins, 8, 177–182.

Emek, A., Ahmet, D., Sait, S., Yekta, G., & Duygu, K. (2024). A novel Lactiplantibacillus plantarum strain: Probiotic properties and optimization of the growth conditions by response surface methodology. World Journal of Microbiology and Biotechnology, 40, 66.

Fan, Y., Jiaju, Q., Zhaoxin, L., Zhiyang, F., Yang, T., Fengxia, L., Haizhen, Z., Chong, Z., & Xiaomei, B. (2020). Influence of different factors on biofilm formation of Listeria monocytogenes and the regulation of the cheY gene. Food Research International, 137, 109405.

Fedrick, C. M., Yang, G. C., & Zhen-quan, Y. (2023). Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. BioMed Research International, 5, 100118.

Feng, Y., Wu, S., Varma, J. K., Klena, J. D., Angulo, F. J., & Ran, L. (2013). Systematic review of human listeriosis in China, 1964–2010. Tropical Medicine & International Health, 18, 1248–1256.

Ferreira, V., Wiedmann, M., Teixeira, P., & Stasiewicz, M. J. (2014). Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. Journal of Food Protection, 77, 150–170.

Furukawa, K., Gu, H., Sudarsan, N., Hayakawa, Y., Hyodo, M., & Breaker, R. R. (2012). Identification of ligand analogs that control c-di-GMP riboswitches. ACS Chemical Biology, 7, 1436–1443.

Garcia-Cano, I., Rocha-Mendoza, D., Ortega-Anaya, J., Wang, K., Kosmerl, E., & Jimenez-Flores, R. (2019). Lactic acid bacteria isolated from dairy products as potential producers of lipolytic, proteolytic, and antibacterial proteins. Applied Microbiology and Biotechnology, 103, 5243–5257.

García, P., Martínez, B., Rodríguez, L., & Rodríguez, A. (2010). Synergistic effect of high-pressure treatment and bacteriocin-producing lactic acid bacteria on inactivation of Listeria monocytogenes in dairy products. International Journal of Food Microbiology, 141(1-2), 44–45.

García-Vela, S., Ben Said, L., Soltani, S., Ramzi, G., Rosa, F., Houssem, B., Karim, B., Carmen, T., & Ismail, F. (2023). Targeting enterococci with antimicrobial activity against Clostridium perfringens from poultry. Antibiotics (Basel), 12, 231.

Gottesman, S. (2019). Trouble is coming: Signaling pathways that regulate general stress responses in bacteria. Journal of Biological Chemistry, 294, 11685–11700.

Hengge, R., Gründling, A., Jenal, U., Ryan, R., & Yildiz, F. (2016). Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. Journal of Bacteriology, 198, 15–26.

Heng, N., Philip, A., Wescombe, A., & P. B., J. (2006). The diversity of bacteriocins in Gram-positive bacteria. In Bacteriocins (pp. 45–92).

Hutt, P. B. (1984). A history of government regulation of adulteration and misbranding of food. Food, Drug, and Cosmetic Law Journal, 39, 2–73.

Inetianbor, J. E., Yakubu, J. M., & Ezeonu, S. C. (2015). Effects of food additives and preservatives on man: A review. Asian Journal of Science and Technology, 16, 1118–1135.

Jami, M., Ghanbari, M., Zunabovic, M., Domig, K. J., & Kneifel, W. (2014). Listeria monocytogenes in aquatic food products: A review. Comprehensive Reviews in Food Science and Food Safety, 13, 798–813.

Janež, N., Škrlj, B., Sterniša, M., Klančnik, A., & Sabotič, J. (2021). The role of the Listeria monocytogenes surfactome in biofilm formation. Microbial Biotechnology, 14, 1269–1281.

Jacek, O., Beata, L., & Kinga, W. (2022). Listeria monocytogenes – how this pathogen survives in food-production environments? Frontiers in Microbiology, 13, 866462.

Jordan, S. J., Perni, S., Glenn, S., Fernandes, I., Barbosa, M., Sol, M., Tenreiro, R. P., Chambel,, L., Barata, B., & Zilhão, I. (2008). Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates. Applied and Environmental Microbiology, 74, 5451–5456.

Jucilene, S. S., Bárbara, B., & Luciana, R. (2021). Listeria monocytogenes: Health risk and a challenge for food processing establishments. Archives of Microbiology, 203, 5907–5919.

Kayode, A. J., & Okoh, A. I. (2022). Antibiotic resistance profile of Listeria monocytogenes recovered from ready-to-eat foods surveyed in South Africa. Journal of Food Protection, 85, 1807–1814.

Kim, U., Kim, J. H., & Oh, S. W. (2021). Review of multi-species biofilm formation from foodborne pathogens: Multi-species biofilms and removal methodology. Critical Reviews in Food Science and Nutrition, Advance online publication. https://doi.org/10.1080/10408398.2021.1873524

Kumariya, R., Kumari, G., Raiput, Y. S., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action, and resistance development in food spoilage-causing bacteria. Microbial Pathogenesis, 128, 171–177.

Kureljusic, J., Rokvic, N., Pavlovic, M., Kureljusic, B., Nesic, K., Tasic, A., & Savic, R. (2019). Listeria monocytogenes contamination in ready-to-eat foods. Earth and Environmental Science, 333, 012072.

Kye-Hwan, B., & Hyun, J. K. (2022). Survival strategies of Listeria monocytogenes to environmental hostile stress: Biofilm formation and stress responses. Food Science & Biotechnology, 32(12), 1631–1651.

Lade, H. S., Chitanand, M. P., Gyananth, G., & Kadam, T. A. (2006). Studies on some properties of bacteriocins produced by Lactobacillus species isolated from agro-based waste. International Journal of Microbiology, 2, 1.

Lasa, I. (2006). Towards the identification of the common features of bacterial biofilm development. International Microbiology, 9, 21–28.

Lado, B., & Yousef, A. E. (2007). Characteristics of Listeria monocytogenes important to food processors. In E. T. Ryser & E. H. Marth (Eds.), Listeria, listeriosis, and food safety (pp. 157–213). CRC Press/Taylor & Francis Group.

Lavious, T. M., & Anthony, I. O. (2020). Listeria monocytogenes: Virulence, antimicrobial resistance, and environmental persistence—a review. Pathogens, 9, 528.

Lee, B. H., Hébraud, M., & Bernardi, T. (2017). Increased adhesion of Listeria monocytogenes strains to abiotic surfaces under cold stress. Frontiers in Microbiology, 8, 1670. https://doi.org/10.3389/fmicb.2017.01670

Lee, B. H., Cole, S., Badel-Berchoux, S., Guillier, L., Felix, B., Krezdorn, N., Hébraud, M., Bernardi, T., Sultan, I., & Piveteau, P. (2019). Biofilm formation of Listeria monocytogenes strains under food processing environments and pan-genome-wide association study. Frontiers in Microbiology, 10, 2698. https://doi.org/10.3389/fmicb.2019.02698

Leong, D., Alvarez-Ordonez, A., Zaquali, S., & Jordan, K. (2016). Examination of Listeria monocytogenes in seafood processing facilities and smoked salmon in the Republic of Ireland. Journal of Food Protection, 78(1), 12–20. https://doi.org/10.4315/0362-028X.JFP-15-244

Lemon, K. P., Higgins, D. E., & Kolter, R. (2007). Flagellar motility is critical for Listeria monocytogenes biofilm formation. Journal of Bacteriology, 189(12), 4418–4424. https://doi.org/10.1128/JB.01697-06

Lemon, K. P., Freitag, N., & Kolter, R. (2010). The virulence regulator PrfA promotes biofilm formation by Listeria monocytogenes. Journal of Bacteriology, 192(15), 3969–3976. https://doi.org/10.1128/JB.00557-10

Liu, G., Ren, L., Song, Z., Wang, C., & Sun, B. (2015). Purification and characteristics of bifidocin A, a novel bacteriocin produced by Bifidobacterium animalis BB04 from centenarians’ intestine. Food Control, 50, 889–895.

Liu, X., Chen, W., Fang, Z., Yu, Y., Bi, J., Wang, J., Dong, Q., & Zhang, H. (2022). Persistence of Listeria monocytogenes ST5 in ready-to-eat food processing environment. Foods, 11(22), 2561. https://doi.org/10.3390/foods11222561

Loessner, M. J., Rees, C. E., Stewart, G. S., & Scherer, S. (1996). Construction of luciferase reporter bacteriophage A511: luxAB for rapid and sensitive detection of viable Listeria cells. Applied and Environmental Microbiology, 62(3), 1133–1140.

Lopes-Luz, L., Marcelo, M., Matheus, B. F., K., & Arun, K. B., & Bührer-Sékula. S. (2021). Listeria monocytogenes: Review of pathogenesis and virulence determinants—Targeted immunological assays. Revista Microbiologia, 52, 647–666.

Lourenco, A., Kristina, L., W., & Beatrix, S. (2022). The saprophytic lifestyle of Listeria monocytogenes and entry into the food-processing environment. Frontiers in Microbiology, 13, 789801. https://doi.org/10.3389/fmicb.2022.789801

Luo, L., Wu, Y., Liu, C., Huang, L., Zou, Y., Shen, Y., & Lin, Q. (2019). Designing soluble soybean polysaccharide-based nanoparticles to improve sustained antimicrobial activity of nisin. Carbohydrate Polymers, 225, 115251. https://doi.org/10.1016/j.carbpol.2019.115251

Mahrous, H., Mohamed, A., El-Mongy, M. A., El-Batal, A. I., & Hamza, H. A. (2013). Study of bacteriocin production and optimization using new isolates of Lactobacillus spp. isolated from some dairy products under different culture conditions. Food and Nutritional Sciences, 4, 342–356.

Maher, S., & McClean, S. (2006). Investigation of the cytotoxicity of eukaryotic and prokaryotic antimicrobial peptides in intestinal epithelial cells in vitro. Biochemical Pharmacology, 71(10), 1289–1298.

Malet, J. K., Impens, F., Carvalho, F., Hamon, M. A., Cossart, P., & Ribet, D. (2018). Rapid remodeling of the host epithelial cell proteome by the Listeriolysin O (LLO) pore-forming toxin. Molecular & Cellular Proteomics, 17(7), 1627–1636. https://doi.org/10.1074/mcp.RA118.000835

Markkula, A., Autio, T., Lundén, J., & Korkeala, H. (2005). Raw and processed fish show identical Listeria monocytogenes genotypes with pulsed-field gel electrophoresis. Journal of Food Protection, 68(6), 1228–1231.

Marion, Z., Andrés, S. K., Mark, S. W., Bastian, B., & Christian, U. R. (2016). Identification of the agr peptide of Listeria monocytogenes. Frontiers in Microbiology, 7, 989. https://doi.org/10.3389/fmicb.2016.00989

Martín, I., Rodríguez, A., & Delgado, J. (2022). Strategies for biocontrol of Listeria monocytogenes using lactic acid bacteria and their metabolites in ready-to-eat meat- and dairy-ripened products. Foods, 11(4), 542. https://doi.org/10.3390/foods11040542

Maury, M. M., Chenal-Francisque, V., Bracq-Dieye, H., Han, L., Leclercq, A., Vales, G., Moura, A., Gouin, E., Scortti, M., & Disson, O. (2016). Spontaneous loss of virulence in natural populations of Listeria monocytogenes. Infection and Immunity, 85(11), e00541-17. https://doi.org/10.1128/IAI.00541-17

Matereke, L. T., & Okoh, A. I. (2020). Listeria monocytogenes virulence, antimicrobial resistance, and environmental persistence: A review. Pathogens, 9(5), 528. https://doi.org/10.3390/pathogens9050528

Mazaheri, B. R. H., Cervantes-Huamán, M., Bermúdez-Capdevila, C., Ripolles-Avila, J. J., & Rodríguez-Jerez, J. J. (2021). Listeria monocytogenes biofilms in the food industry: Is the current hygiene program sufficient to combat the persistence of the pathogen? Microorganisms, 9(2), 181. https://doi.org/10.3390/microorganisms9020181

McLauchlin, J., Grant, K. A., & Amar, C. F. L. (2020). Human foodborne listeriosis in England and Wales, 1981 to 2015. Epidemiology and Infection, 148, e54. https://doi.org/10.1017/S0950268820000964

Meade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, potent antimicrobial peptides, and the fight against multi-drug resistant species: Resistance is futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032

Modugno, C., Kmiha, S., Simonin, H., Aouadhi, C., Cañizares, E. D., Lang, E., André, S., Mejri, S., Maaroufi, A., & Perrier-Cornet, J. M. (2019). High-pressure sensitization of heat-resistant and pathogenic foodborne spores to nisin. Food Microbiology, 84, 103244. https://doi.org/10.1016/j.fm.2019.103244

Mohamed, Y., Reda, W. W., Abdel-Moein, K., El-Razik, K. A. A., Barakat, A. M. A., Fadaly, H. A., Hassanain, N. A., & Hegazy, A. G. (2016). Prevalence and phylogenetic characterization of Listeria monocytogenes isolated from processed meat marketed in Egypt. Journal of Genetic Engineering and Biotechnology, 14, 119–123. https://doi.org/10.1016/j.jgeb.2016.01.001

Mohan, S. A., & Sufyaan, Z. (2023). Listeria monocytogenes cerebritis and infective endocarditis in an immunocompetent adult: A rare clinical manifestation. Case Reports in Infectious Diseases, 2023, 7405556. https://doi.org/10.1155/2023/7405556

Morales-Estrada, A. I., Lopez-Merino, A., Gutierrez-Mendez, N., Ruiz, E. A., & Contreras-Rodriguez, A. (2016). Partial characterization of bacteriocin produced by halotolerant Pediococcus acidilactici strain QC38 isolated from traditional Cotija cheese. Polish Journal of Microbiology, 65(3), 279–285. https://doi.org/10.1515/pjmic-2016-0050

Morrison, H.. A., Lowe, D., Robbins, J. R., & Bakardjiev, A.. I. (2018). In vivo virulence characterization of pregnancy-associated Listeria monocytogenes infections. Infection and Immunity, 86(10), e00397-18. https://doi.org/10.1128/IAI.00397-18

Murinda, S., Rashid, K., & Roberts, R. (2003). In vitro assessment of the cytotoxicity of nisin, pediocin, and selected colicins on simian Virus 40-transfected human colon and Vero monkey kidney cells with trypan blue staining viability assays. Journal of Food Protection, 66(4), 847–853. https://doi.org/10.4315/0362-028X-66.4.847

Nathan, W., Eric, N., Elizabeth, A., Ashley Z., & Yvonne, S. (2017). Metabolic determinants in Listeria monocytogenes anaerobic listeriolysin O production. Archives of Microbiology, 199(7), 827–837. https://doi.org/10.1007/s00203-017-1368-4

Ng, Z. J., Zarin, M. A., Lee, C. K., & Tan, J. S. (2020). Application of bacteriocins in food preservation and infectious disease treatment for humans and livestock: A review. RSC Advances, 10(57), 38937–38964. https://doi.org/10.1039/D0RA04577J

Nguyen, B. N., Peterson, B. N., & Portnoy, D. A. (2019). Listeriolysin O: A phagosome-specific cytolysin revisited. Cell Microbiology, 21(7), e12988. https://doi.org/10.1111/cmi.12988

Nguyen, U. T., & Burrows, L. L. (2014). DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. International Journal of Food Microbiology, 187, 26–32. https://doi.org/10.1016/j.ijfoodmicro.2014.06.015

Osek, J., Lachtara, B., & Wieczorek, K. (2022). Listeria monocytogenes—how this pathogen survives in food-production environments? Frontiers in Microbiology, 13, 866462. https://doi.org/10.3389/fmicb.2022.866462

Owusu-Kwarteng, J., Akabanda, F., & Agyei, D. (2020). Microbial safety of milk production and fermented dairy products in Africa. Microorganisms, 8(5), 752. https://doi.org/10.3390/microorganisms8050752

Parada, J. L., Caron, C. R., Medeiros, A. B. P., & Soccol, C. R. (2007). Bacteriocins from lactic acid bacteria: Purification, properties, and use as biopreservatives. Brazillian Archives of Biology and Technology, 50(4), 521–542. https://doi.org/10.1590/S1516-89132007000400009

Palaiodimou, L., Fanning, S., & Fox, E. M. (2021). Genomic insights into persistence of Listeria species in the food processing environment. Journal of Applied Microbiology, 131(8), 2082–2094.

Perez, R. H., Zendo, T., & Sonomoto, K. (2014). Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microbial Cell Factories, 13(Suppl 1), S3. https://doi.org/10.1186/1475-2859-13-S1-S3

Perez, L. J., Ng, W. L., Marano, P., Brook, K., Bassler, B. L., & Semmelhack, M. F. (2012). Role of the CAI-1 fatty acid tail in the Vibrio cholerae quorum sensing response. Journal of Medicinal Chemistry, 55(22), 9669–9681. https://doi.org/10.1021/jm300902m

Pichler, P., Much, S., Kasper, R., Fretz, B., Auer, J., Kathan, M., Mann, S., Huhulescu, W., Ruppitsch, A., Pietzka, K., Silberbauer, C., Neumann, E., Gschiel, A., de Martin, A., Schütz, J., & Gindl, E. (2009). An outbreak of febrile gastroenteritis associated with jellied pork contaminated with Listeria monocytogenes. Wiener Klinische Wochenschrift, 121(2), 81–88.

Piercey, M. J., Hingston, P. A., Truelstrup Hansen, L., & Wang, S. (2016). Comparison of Listeria monocytogenes exoproteomes from biofilm and planktonic cells reveals a role for Lmo2504 in biofilm formation. Applied and Environmental Microbiology, 82(16), 5132–5142. https://doi.org/10.1128/AEM.01125-16

Rabin, N., Zheng, Y., Opoku-Temeng, C., Du, Y., Bonsu, E., & Sintim, H. O. (2015). Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Medicinal Chemistry, 7(4), 493–512. https://doi.org/10.4155/fmc.14.245

Radoshevich, L., & Cossart, P. (2018). Listeria monocytogenes: Towards a complete picture of its physiology and pathogenesis. Nature Reviews Microbiology, 16(1), 32–46. https://doi.org/10.1038/nrmicro.2017.98

Rajagopal, M., & Walker, S. (2017). Envelope structures of gram-positive bacteria. Current Topics in Microbiology and Immunology, 404, 1–44. https://doi.org/10.1007/978-3-319-57848-0_1

Ranasinghe, R. A. S. S., Satharasinghe, D. A., Tang, J. Y. H., Rukayadi, Y., Radu, K. R., & New, C. Y. (2021). Persistence of Listeria monocytogenes in food commodities: Foodborne pathogenesis, virulence factors, and implications for public health. Food Research International, 142, 110269. https://doi.org/10.1016/j.foodres.2021.110269

Reis-Teixeira, F. B. D., Alves, V. F., & de Martinis, E. C. P. (2017). Growth, viability, and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces. Brazilian Journal of Microbiology, 48(2), 587–591. https://doi.org/10.1016/j.bjm.2016.12.004

Roy, S. M., Riley, M. A., & Crabb, J. H. (2016). Treating bovine mastitis with nisin: A model for the use of protein antimicrobials in veterinary medicine. In The Bacteriocins: Current Knowledge and Future Prospects (pp. 127–140). Caister Academic Press.

Richter, A. M., Povolotsky, T. L., Wieler, L. H., & Hengge, R. (2014). Cyclic-di-GMP signaling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4. EMBO Molecular Medicine, 6(12), 1622–1637. https://doi.org/10.152

Ricke, S. C. (2003). Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82, 632–639.

Ross, P., Weinhouse, H., Aloni, Y., Michaeli, D., Weinberger-Ohana, P., & Mayer, R. (1987). Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 325, 279–281.

Ruan, Y., Rezelj, S., Bedina Zavec, A., Anderluh, G., & Scheuring, S. (2016). Listeriolysin O membrane damaging activity involves Arc formation and lineaction: Implication for Listeria monocytogenes escape from phagocytic vacuole. PLoS Pathogens, 12, e1005597. https://doi.org/10.1371/journal.ppat.1005597

Ryjenkov, D. A., Tarutina, M., Moskvin, O. V., & Gomelsky, M. (2005). Cyclic di-GMP is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. Journal of Bacteriology, 187, 1792–1798. https://doi.org/10.1128/JB.187.6.1792-1798.2005

Santos, T., Viala, D., Chambon, C., Esbelin, J., & Hébraud, M. (2019). Listeria monocytogenes biofilm adaptation to different temperatures seen through shotgun proteomics. Frontiers in Nutrition, 6, 89. https://doi.org/10.3389/fnut.2019.00089

Saraoui, T., Leroi, F., & Chevalier, F. (2018). Bioprotective effect of Lactococcus piscium CNCM I-4031 against Listeria monocytogenes growth and virulence. Frontiers in Microbiology, 9, 1564. https://doi.org/10.3389/fmicb.2018.01564

Sauders, B. D., & D’Amico, D. J. (2016). Listeria monocytogenes cross-contamination of cheese: Risk throughout the food supply chain. Epidemiology and Infection, 144(12), 2693–2697. https://doi.org/10.1017/S0950268816001575

Sawa, N., Okamura, K., Zendo, T., Himeno, K., & Nakayama, J. (2010). Identification and characterization of novel multiple bacteriocins produced by Leuconostoc pseudomesenteroides QU 15. Journal of Applied Microbiology, 109(1), 282–291. https://doi.org/10.1111/j.1365-2672.2009.04678.x

Schellhorn, H. E. (2020). Function, evolution, and composition of the RpoS regulon in Escherichia coli. Frontiers in Microbiology, 11, 560099. https://doi.org/10.3389/fmicb.2020.560099

Schmidt, A., Hammerbacher, A. S., Bastian, M., Nieken, K. J., Klockgether, J., & Merighi, M. (2016). Oxygen-dependent regulation of c-di-GMP synthesis by SadC controls alginate production in Pseudomonas aeruginosa. Environmental Microbiology, 18(12), 3390–3402. https://doi.org/10.1111/1462-2920.13484

Schirone, M., & Visciano, P. (2021). Trends of major foodborne outbreaks in the European Union during the years 2015–2019. Hygiene, 1(4), 106–119.

Schjorring, S. G., Lassen, T., Jensen, A., Moura, J. S., Kjeldgaard, L., & Mueller, L. (2017). Cross-border outbreak of listeriosis caused by cold-smoked salmon, revealed by integrated surveillance and whole genome sequencing (WGS), Denmark and France, 2015 to 2017. Euro Surveillance, 22(50), 17–25. https://doi.org/10.2807/1560-7917.ES.2017.22.50.17-25

Seo, H. J., & Kang, S. S. (2020). Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella typhimurium. Food Control, 117, 107361. https://doi.org/10.1016/j.foodcont.2020.107361

Sibanda, T., & Buys, E. M. (2022). Listeria monocytogenes pathogenesis: The role of stress adaptation. Microorganisms, 10(8), 1522. https://doi.org/10.3390/microorganisms10081522

Silva, C. C., Silva, S. P., & Ribeiro, S. C. (2018). Application of bacteriocins and protective cultures in dairy food preservation. Frontiers in Microbiology, 9, 594. https://doi.org/10.3389/fmicb.2018.00594

Soltani, S., Hammami, R., Cotter, P. D., Rebuffat, S., Said, L. B., Gaudreau, H., Bédard, F., Biron, E., Drider, D., & Fliss, I. (2021). Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations. FEMS Microbiology Reviews, 45(3), 1–39. https://doi.org/10.1093/femsre/fuab009

Sun, Z., Wang, X., Zhang, X., Wu, H., Zou, Y., Li, P., Sun, C., Xu, W., Liu, F., & Wang, D. (2018). Class III bacteriocin Helveticin-M causes sublethal damage on target cells through impairment of cell wall and membrane. Journal of Industrial Microbiology & Biotechnology, 45(2), 213–227. https://doi.org/10.1007/s10295-017-2019-5

Szlavik, J., Paiva, D. S., Mork, N., van den Berg, F., Verran, J., Whitehead, K., Knochel, S., & D. S. (2012). Initial adhesion of Listeria monocytogenes to solid surfaces under liquid flow. International Journal of Food Microbiology, 152(3), 181–188. https://doi.org/10.1016/j.ijfoodmicro.2011.12.016

Tanushree, G., & Argha, B. (2021). Microbial production of bacteriocins and its applications in food preservation. Journal of Food Technology, (3), 1-2. [Note: The volume/issue info is incomplete; please add if available.]

Todorov, S. D., & colleagues (2022). Use of bacteriocins and bacteriocinogenic beneficial organisms in food products: Benefits, challenges, concerns. Foods, 11(13), 3145. https://doi.org/10.3390/foods11133145

Tirloni, E., Centorotola, G., Pomilio, F., Torresi, M., Bernardi, C., & Stella, S. (2024). Listeria monocytogenes in ready-to-eat delicatessen foods: Prevalence, genomic characterization of isolates, and growth potential. International Journal of Food Microbiology, 380, 109123. https://doi.org/10.1016/j.ijfoodmicro.2023.109123

Travier, L., et al. (2013). ActA promotes Listeria monocytogenes aggregation, intestinal colonization, and carriage. PLoS Pathogens, 9(1), e1003131. https://doi.org/10.1371/journal.ppat.1003131

Trémoulet, F., Duché, O., Namane, A., Martinie, B., & Labadie, J. C. (2002). Comparison of protein patterns of Listeria monocytogenes grown in biofilm or in planktonic mode by proteomic analysis. FEMS Microbiology Letters, 210(1), 25–31. https://doi.org/10.1111/j.1574-6968.2002.tb11150.x

Todorov, S. D. (2009). Bacteriocins from Lactobacillus plantarum—Production, genetic organization. Brazilian Journal of Microbiology, 40(1), 209–221. https://doi.org/10.1590/S1517-83822009000100031

Todorov, S.D., Perin, L.M., Carneiro, B.M., Rahal, P., Holzapfel, W., Nero, L.A. (2017). Safety of Lactobacillus plantarum ST8Sh and its bacteriocin. Probiotics Antimicro, 9, 334–344

Tschowri, N., Lindenberg, S., and Hengge, R. (2012). Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli. Mol. Microbiol, 85, 893– 906.

Unrath, N., McCabe, E., Macori, G., Fanning, S. (2021). Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms, 9,1856.

Uyttendaele, M., P. Busschaert, A. Valero, A.H. Geeraerd, Vermeulen, A., L.Jacxsens, K. K. Goh, A., De Loy, Van Impe, J. F. & Devlieghere, F. 2009). Prevalence and challenge tests of Listeria monocytogenes in Belgian produced and retailed mayonnaise-based deli-salads, cooked meat products and smoked fish between 2005 and 2007. Int. J. Food Microbiol,133,94-104.

Van, d. V., S., & Abee, T. (2010). Importance of SigB for Listeria monocytogenes static and continuous-flow biofilm formation and disinfectant resistance. Applied and Environmental Microbiology, 76(24), 7854–7860.

Vasquez,C.G, Martin,A.C. (2016). Force transmission in epithelial tissues. Dev. Dyn,45,361–371.

Vongkamjan, K., Benjakul, S., Thi Kim Vu, H., Vuddhakul, V. (2017).Longitudinal monitoring of Listeria monocytogenes and Listeria phages in seafood processing environments in Thailand. Food Microbiology, 66,11-19.

Wallace, N.; Newton, E.; Abrams, E.; Zani, A.; Sun, Y. (2017). Metabolic determinants in Listeria monocytogenes anaerobic listeriolysin O production. Arch. Microbiol, 199, 827–837.

Wagner, M., Auer, B., Trittremmel, C., Hein, I., Schoder, D.2007). Survey on the Listeria Contamination of Ready-to-Eat Food Products and Household Environments in Vienna, Austria. Zoonoses and public health, 54(1), 16-2.

Weiwei, L., Li, B., Ping, F., Haihong, H., Jikai L., & Yunchang, G. (2018). The Epidemiology of Listeria monocytogenes in China. FOODBORNE PATHOGENS AND DISEASE 15,8.

Wiktorczyk-Kapischke, N., Skowron, K., Grudlewska-Buda, K., Wałecka-Zacharska, E., Korkus J., Gospodarek-Komkowska, E. (2021). Adaptive response of Listeria monocytogenesto the stress factors in the food processing environment. Front Microbiol,12,710085.

Wingender, J.; Strathmann, M.; Rode, A.; Leis, A.; Flemming, H.C. (2001). Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Method Enzymol., 336, 302–314.imes. J. Food Prot, 63,1204- 1207.

World Health Organization. (2016). Burden of Foodborne Diseases in the South-East Asia Region. World Health Organization, Geneva.

Wu, S., Wu, Q., Zhang, J., Chen, M., Yan, Z. and Hu, H. (2015). Listeria monocytogenes prevalence and characteristics in retail raw foods in China. PLOS ONE, 10(8), e0136682.

Wu, S., Yu, P.L., Wheeler, D., and Flint, S. (2018). Transcriptomic study on persistence and survival of Listeria monocytogenes following lethal treatment with nisin. J. Glob. Antimicrob. Resist,15, 25–31.

Wu, Y., Han, L., Dong, J., Luo, P., Zhang, X., Zhu, Y. (2021). Inhibition of Biofilm Formation and Related Gene Expression of Listeria monocytogenes in Response to Four Natural Antimicrobial Compounds and Sodium Hypochlorite. Front. Microbiol, 11,3523.

Xu, Z.,Liu, Z., Soteyome, T., Hua, J.,Zhang, L., Yuan, L., Ye, Y.; Cai, Z.; Yang, L., Chen, L .(2021). Impact of pmrA on Cronobacter sakazakii planktonic and biofilm cells: A comprehensive transcriptomic study. Food Microbiol, 98,103785.

Yang, Y., Xiangxiang, K.,Bing, N.,Jielin, Y.,Qin C.(2024). Differences in Biofilm Formation of Listeria monocytogenes and Their Effects on Virulence and Drug Resistance of Different Strains. Foods, 13, 1076.

Yao, H., Kang, M., Wang, Y., Feng, Y., Kong, S., Cai, X., Ling, Z., Chen, S., Jiao, X., Yin, Y. (2018). An essential role for hfq is involved in biofilm formation and virulence in serotype 4b Listeria monocytogenes. Microbiol. Res., 215, 148–154.

Yi, Y., Li, P., Zhao, F., Zhang, T., Shan, Y., Wang, X., Liu, B., Chen, Y., Zhao, X., Lü, X. (2022). Current status and potentiality of class II bacteriocins from lactic acid bacteria: Structure, mode of action, and applications in the food industry. Trends Food Sci. Technol,3,87–401.

Yu, W., Guo, J., Y. Liu, Y. (2023) “Potential Impact of Combined Inhibition by Bacteriocins and Chemical Substances of Foodborne Pathogenic and Spoilage Bacteria: A Review,” Foods ,12 (16), 3128–321

Yujuan, Y., Xiangxiang, K., Bing, N., Jielin, Y., Qin, C. (2024). Differences in Biofilm Formation of Listeria monocytogenes and Their Effects on Virulence and Drug Resistance of Different Strains. Foods.13,1076.

Zacharof, M.P., Lovitt, R.W. (2012). Bacteriocins produced by lactic acid bacteria: A review article. APCBEE Procedia, 2, 50–56.

Zetzmann M., Bucur F.I., Crauwels P., Borda D., Nicolau A.I., Grigore-Gurgu L., Seibold G.M., Riedel C.U. (2019). Characterization of the biofilm phenotype of Listeria monocytogenes mutant deficient in agr peptide sensing. Microbiologyopen,8, e00826.

Zhang, H., Que, F., Xu, B., Sun, L., Zhu, Y., Chen, W., Ye, Y., Dong, Q., Liu, H., Zhang, X. (2021). Identification of Listeria monocytogenes contamination in a Ready-to-Eat meat processing plant in China.Front. Microbiol, 12, 628204.

Zhu, L., Zeng, J., Wang, C., Wang, J. (2022). Structural basis of pore formation in the mannose phosphotransferase system by pediocin PA-1. Appl Environ Microbiol, 88, e0199221.

Zhang Y, Yang J, Liu Y. (2020). A novel bacteriocin PE‐ZYB1 produced by Pediococcus pentosaceus zy‐B isolated from the intestine of Mimachlamys nobilis: purification, identification, and its anti‐listerial action. LWT.,118,108760.

Zoz, F., Grandvalet, C., Lang, E., Iaconelli, C., Gervais, P., Firmesse, O., Guyot, S., Beney, L. (2017). Listeria monocytogenes ability to survive desiccation: Influence of serotype, origin, virulence, and genotype. Int. J. Food Microbiol, 248,82–89.

Downloads

Published

2025-10-20

How to Cite

Oudah Hussein, A., Binti Mohd Zaini, N. A., Kamaruddin, S., Firdose, A., Syahmi Sam-on, M. F., Abdulkareem Najm, A. ., & Aqma, W. S. (2025). Using bacteriocin as an alternative preservative: A promising approach for Listeria monocytogenes control in canned foods and other food products. Journal of Wildlife and Biodiversity, 9(3), 340–373. https://doi.org/10.5281/zenodo.17386882