NUMTs as Diagnostic Markers for Hybrid Identification in Tigers: A Novel Reference-Free Approach
DOI:
https://doi.org/10.5281/zenodo.17386708Keywords:
Nuclear mitochondrial DNA (NUMTs), Hybrid identification, Panthera tigris altaica, Panthera tigris amoyensis, Gene pool contaminationAbstract
Maintaining genetic purity is critical in conservation breeding programs, especially for endangered subspecies like the South China tiger (Panthera tigris amoyensis) and the Amur tiger (Panthera tigris altaica), where hybridization threatens subspecies integrity and reintroduction success. However, identifying hybrids is challenging due to unreliable morphological traits and limited access to verified purebred genomes. Here, we present Auto-Ref HybrID, a novel reference-free method that leverages nuclear mitochondrial DNA segments (NUMTs) as genetic markers to distinguish purebred and hybrid individuals using whole genome sequencing (WGS) data. We analyzed 400 fecal samples from captive tigers and found that hybrid individuals exhibit significantly higher NUMT counts, elevated mutation rates, and greater divergence from the maternal mitogenome compared to purebreds. Genetic distance metrics and phylogenetic clustering confirmed the presence of hybridization signals, even at shallow sequencing depths. Our results establish NUMTs as robust, scalable markers for hybrid detection and demonstrate that Auto-Ref HybrID is a powerful tool for assessing gene pool contamination in conservation programs where reference genomes are lacking
References
Andrews, S., Krueger, F., Segonds-Pichon, A., Biggins, L., Krueger, C., & Wingett, S. (2010). FastQC. A quality control tool for high throughput sequence data, 370.
Arumugam, K. A., & Annavi, G. (2019). Captive breeding of threatened mammals native to Southeast Asia–a review on their ex-situ management, implications, and reintroduction guidelines. Annual Research & Review in Biology, 30, 1-16.
Asa, C., Traylor‐Holzer, K., & Lacy, R. (2011). Can conservation‐breeding programmes be improved by incorporating mate choice? International Zoo Yearbook, 45(1), 203-212.
Ballou, J. D. (1992). Genetic and demographic considerations in endangered species captive breeding and reintroduction programs. In Wildlife 2001: populations (pp. 262-275). Springer.
Bazinet, A., Ondov, B., Sommer, D., & Ratnayake, S. BLAST-based validation of metagenomic sequence assignments. PeerJ. 2018; 6: e4892. In.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. bioinformatics, 30(15), 2114-2120.
Calabrese, F. M., Simone, D., & Attimonelli, M. (2012). Primates and mouse NumtS in the UCSC Genome Browser. BMC bioinformatics, 13, 1-9.
Dinerstein, E., Loucks, C., Wikramanayake, E., Ginsberg, J., Sanderson, E., Seidensticker, J.,…Klenzendorf, S. (2007). The fate of wild tigers. BioScience, 57(6), 508-514.
Dobrynin, P., Liu, S., Tamazian, G., Xiong, Z., Yurchenko, A. A., Krasheninnikova, K.,…Johnson, W. (2015). Genomic legacy of the African cheetah, Acinonyx jubatus. Genome biology, 16, 1-20.
Earnhardt, J. M. (1999). Reintroduction programmes: genetic trade‐offs for populations. Animal Conservation, 2(4), 279-286.
Frankham, R., Briscoe, D. A., & Ballou, J. D. (2002). Introduction to conservation genetics. Cambridge university press.
Goodrich, J., Wibisono, H., Miquelle, D., Lynam, A., Sanderson, E., Chapman, S.,…Harihar, A. (2022). Panthera tigris. The IUCN red list of threatened species 2022: E. T15955A214862019. In.
Guoliang, C., Zhongkui, L., Peilin, S., Kun, J., & Qingyong, S. (2001). The current situation and the pedigree analysis of South China tiger. Chinese Journal of Zoology, 36(4), 45-48.
Harihar, A., Ghosh-Harihar, M., & MacMillan, D. C. (2014). Human resettlement and tiger conservation–socio-economic assessment of pastoralists reveals a rare conservation opportunity in a human-dominated landscape. Biological conservation, 169, 167-175.
Hebblewhite, M., Miquelle, D. G., Murzin, A. A., Aramilev, V. V., & Pikunov, D. G. (2011). Predicting potential habitat and population size for reintroduction of the Far Eastern leopards in the Russian Far East. Biological conservation, 144(10), 2403-2413.
Iucn, S. (2013). Guidelines for reintroductions and other conservation translocations. Gland Switz Camb UK IUCNSSC Re-Introd Spec Group, 57.
Jackiw, R. N., Mandil, G., & Hager, H. A. (2015). A framework to guide the conservation of species hybrids based on ethical and ecological considerations. Conservation biology, 29(4), 1040-1051.
Li, G., Davis, B. W., Eizirik, E., & Murphy, W. J. (2016). Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome research, 26(1), 1-11.
Luo, S.-J., Kim, J.-H., Johnson, W. E., Walt, J. v. d., Martenson, J., Yuhki, N.,…Quigley, H. B. (2004). Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS biology, 2(12), e442.
Luo, S.-J., Liu, Y.-C., & Xu, X. (2019). Tigers of the world: Genomics and conservation. Annual review of animal biosciences, 7(1), 521-548.
Maguire, L. A., & Lacy, R. C. (1990). Allocating scarce resources for conservation of endangered subspecies: Partitioning zoo space for tigers. Conservation biology, 4(2), 157-166.
Mazak, V. (1981). Panthera tigris. Mammalian species(152), 1-8.
Miquelle, D. G., Stephens, P. A., Smirnov, E. N., Goodrich, J. M., Zaumyslova, O. Y., & Myslenkov, A. E. (2005). Tigers and wolves in the Russian Far East: competitive exclusion, functional redundancy and conservation implications. Large carnivores and the conservation of biodiversity, 179-207.
Ning, Y., Liu, D., Gu, J., Zhang, Y., Roberts, N. J., Guskov, V. Y.,…Qi, J. (2024). The genetic status and rescue measure for a geographically isolated population of Amur tigers. Scientific reports, 14(1), 8088.
Orr, H. A., & Turelli, M. (2001). The evolution of postzygotic isolation: accumulating Dobzhansky‐Muller incompatibilities. Evolution, 55(6), 1085-1094.
Pollinger, J. P., Earl, D. A., Knowles, J. C., Boyko, A. R., Parker, H., Geffen, E.,…Sidorovich, V. (2011). A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome research, 21(8), 1294-1305.
Richly, E., & Leister, D. (2004). NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution, 21(6), 1081-1084.
Russello, M. A., Gladyshev, E., Miquelle, D., & Caccone, A. (2004). Potential genetic consequences of a recent bottleneck in the Amur tiger of. Conservation Genetics, 5, 707-713.
SJ, L. (2004). Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Bio, 2, 2275-2293.
Skowronek, K., Boniecki, M. J., Kluge, B., & Bujnicki, J. M. (2012). Rational engineering of sequence specificity in R. MwoI restriction endonuclease. Nucleic acids research, 40(17), 8579-8592.
Snyder, N. F., Derrickson, S. R., Beissinger, S. R., Wiley, J. W., Smith, T. B., Toone, W. D., & Miller, B. (1996). Limitations of captive breeding in endangered species recovery. Conservation biology, 10(2), 338-348.
Tilson, R., Defu, H., Muntifering, J., & Nyhus, P. J. (2004). Dramatic decline of wild South China tigers Panthera tigris amoyensis: field survey of priority tiger reserves. Oryx, 38(1), 40-47.
Tilson, R., & Nyhus, P. J. (2009). Tigers of the world: the science, politics and conservation of Panthera tigris. Academic Press.
Tilson, R., Traylor‐Holzer, K., & Jiang, Q. M. (1997). The decline and impending extinction of the South China tiger. Oryx, 31(4), 243-252.
Todesco, M., Pascual, M. A., Owens, G. L., Ostevik, K. L., Moyers, B. T., Hübner, S.,…Bock, D. G. (2016). Hybridization and extinction. Evolutionary applications, 9(7), 892-908.
Toolkit, P. (2019). Broad institute. (No Title).
Traylor-Holzer, K., Zhong, X., & Yuzhong, Y. (2010). The struggle to save the last South China tigers. In Tigers of the World (pp. 457-461). Elsevier.
Turelli, M., & Moyle, L. C. (2007). Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. Genetics, 176(2), 1059-1088.
Veasey, J. S. (2020). Can zoos ever be big enough for large wild animals? A review using an expert panel assessment of the psychological priorities of the amur tiger (Panthera tigris altaica) as a model species. Animals, 10(9), 1536.
Wang, C., Wu, D.-D., Yuan, Y.-H., Yao, M.-C., Han, J.-L., Wu, Y.-J.,…Huang, M. (2023). Population genomic analysis provides evidence of the past success and future potential of South China tiger captive conservation. BMC biology, 21(1), 64.
Wang, T., Feng, L., Mou, P., Wu, J., Smith, J. L., Xiao, W.,…Cheng, Y. (2016). Amur tigers and leopards returning to China: direct evidence and a landscape conservation plan. Landscape ecology, 31, 491-503.
Yachmennikova, A., Zhu, S., Kotlov, I., Sandlersky, R., Yi, Q., & Rozhnov, V. (2022). Is the Lesser Khingan suitable for the Amur tiger restoration? Perspectives with the current state of the habitat and prey base. Animals, 13(1), 155.
Zhang, L., Lan, T., Lin, C., Fu, W., Yuan, Y., Lin, K.,…Chen, D. (2023). Chromosome‐scale genomes reveal genomic consequences of inbreeding in the South China tiger: A comparative study with the Amur tiger. Molecular Ecology Resources, 23(2), 330-347.
Zhang, W., Xu, X., Yue, B., Hou, R., Xie, J., Zou, Z.-T.,…Xie, Z. (2019). Sorting out the genetic background of the last surviving South China tigers. Journal of Heredity, 110(6), 641-650.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.