Pan-mitochondrial Genomic Analysis of Felis catus: Insights into Cat Domestication
DOI:
https://doi.org/10.5281/zenodo.17381813Keywords:
adaptive evolution, mitochondrial genome, nad5, phylogenomic analysesAbstract
Despite the popularity and diversity of domestic cats (Felis catus), the genetic adaptations resulting from their domestication remain largely unknown. To address this, we sequenced the complete mitochondrial genomes of five Chinese domestic cats and combined them with 126 publicly available sequences to create a comprehensive dataset. Phylogenomic analyses revealed significant genetic diversity within domestic cat lineages, distinct from their wild relatives (F. silvestris). Selective pressure analysis indicated that all 13 mitochondrial protein-coding genes are under purifying selection in domestic cats. We identified 16 stable variations differentiating domestic cats from wildcats, including a non-synonymous mutation in nad5, which encodes a subunit of mitochondrial respiratory complex I and is crucial for energy metabolism. Importantly, nad5 is under purifying selection in both groups, with domestic cats experiencing slightly stronger selection. Our findings illuminate the impact of domestication on mitochondrial genome evolution in cats, particularly selection on the respiratory gene nad5, providing insights into adaptive responses to human-modified environments.
References
Bai, Y.D., Shakeley, R. M., & Attardi, G. (2000). Tight control of respiration by NADH dehydrogenase ND5 subunit gene expression in mouse mitochondria. Molecular and Cellular Biology, 20(3), 805–815.
Bernt, M., Donath, A., Juehling, F., Externbrink, F., Florentz, C., Fritzsch, G., Puetz, J., Middendorf, M., & Stadler, P. F. (2013). MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69(2), 313–319.
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.
Bouma, E. M., Reijgwart, M. L., & Dijkstra, A. (2021). Family member, best friend, child or ‘just a pet’: Owners’ relationship perceptions and consequences for their cats. International Journal of Environmental Research and Public Health, 18(1), 193.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST plus: Architecture and applications. BMC Bioinformatics, 10(1), 421.
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4), 540–552.
Chang, H., Qiu, Z., Yuan, H., Wang, X., & Huang, Y. (2020). Evolutionary rates of and selective constraints on the mitochondrial genomes of orthoptera insects with different wing types. Molecular Phylogenetics and Evolution, 145, 106734.
Menotti-Raymond, M., Roca, A. L., Hupe, K., Johnson, W. E., Geffen, E., Harley, E. H., Delibes, M., Pontier, D., Kitchener, A. C., Yamaguchi, N., O’Brien, S. J., Macdonald, D. W., & Driscoll, C. A. (2007). The Near Eastern Origin of Cat Domestication. Science, 317(5837), 519–523. https://doi.org/10.1126/SCIENCE.1139518
Grant, J. R., Enns, E., Marinier, E., Mandal, A., Herman, E. K., Chen, C. Y., Graham, M., Van Domselaar, G., & Stothard, P. (2023). Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Research, 51(W1), gkad326.
Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
Hu, Y., Hu, S., Wang, W., Wu, X., Marshall, F. B., Chen, X., Hou, L., & Wang, C. (2014). Earliest evidence for commensal processes of cat domestication. Proceedings of the National Academy of Sciences, 111(1), 116–120.
Isabelle, C., Abby, C., L. T. C., & Antonio, B. J. (2020). The complete mitochondrial genome of the red-jointed brackish-water fiddler crab Minuca minax (LeConte 1855) (Brachyura: Ocypodidae): New family gene order, and purifying selection and phylogenetic informativeness of protein coding genes. Genomics, 113(1), 565–572.
James, J. E., Piganeau, G., & Eyre-Walker, A. (2016). The rate of adaptive evolution in animal mitochondria. Molecular Ecology, 25(1), 67–78.
Jin, J. J., Yu, W. B., Yang, J. B., Song, Y., de Pamphilis, C. W., Yi, T. S., & Li, D. Z. (2020). GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21(1), 1–31.
Krüger, M., Hertwig, S. T., Jetschke, G., & Fischer, M. S. (2009). Evaluation of anatomical characters and the question of hybridization with domestic cats in the wildcat population of Thuringia, Germany. Journal of Zoological Systematics and Evolutionary Research, 47(3), 268–282.
Letunic, I., & Bork, P. (2021). Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296.
Li, G., Davis, B. W., Eizirik, E., & Murphy, W. J. (2016). Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Research, 26(1), 1–11.
Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452.
Menotti-Raymond, M., David, V. A., Pflueger, S. M., Lindblad-Toh, K., Wade, C. M., O’Brien, S. J., & Johnson, W. E. (2008). Patterns of molecular genetic variation among cat breeds. Genomics, 91(1), 1–11.
Montague, M. J., Li, G., Gandolfi, B., Khan, R., Aken, B. L., Searle, S. M., Minx, P., Hillier, L. W., Koboldt, D. C., & Davis, B. W. (2014). Comparative analysis of the domestic cat genome reveals genetic signatures underlying feline biology and domestication. Proceedings of the National Academy of Sciences, 111(48), 17230–17235.
Mousavi, M., Naderi, S., Rezaei, H. R., & Adibi, M. A. (2022). Evolutionary history and distribution of African wildcat, Felis lybica in Iran. Caspian Journal of Environmental Sciences, 20(3), 637–648.
Nakamura, T., Yamada, K. D., Tomii, K., & Katoh, K. (2018). Parallelization of MAFFT for large-scale multiple sequence alignments. Bioinformatics, 34(14), 2490–2492.
Nguyen, H. D., Bui, T. A., Nguyen, P. T., Kim, O. T. P., & Vo, T. T. B. (2017). The complete mitochondrial genome sequence of the indigenous I pig (Sus scrofa) in Vietnam. *Asian-Australasian Journal of Animal Sciences, 30(7), 930–937.
O’Connor, T. P. (2007). Wild or domestic? Biometric variation in the cat Felis silvestris Schreber. International Journal of Osteoarchaeology, 17(6), 581–595.
Ojala, D., Montoya, J., & Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806), 470–474.
Page, A. J., Taylor, B., Delaney, A. J., Soares, J., Seemann, T., Keane, J. A., & Harris, S. R. (2016). SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics, 2(4), e000056.
Patterson, E. C., Lall, G. M., Neumann, R., Ottolini, B., Batini, C., Sacchini, F., Foster, A. P., Wetton, J. H., & Jobling, M. A. (2023). Mitogenome sequences of domestic cats demonstrate lineage expansions and dynamic mutation processes in a mitochondrial minisatellite. BMC Genomics, 24(1), 690.
Puzachenko, A. Y. (2002). Hybrid syndrome and method for identification of hybrids in museum collections of Felis silvestris and Felis lybica. Säugetierkundliche Informationen, 26, 234–248.
Rackham, O., & Filipovska, A. (2022). Organization and expression of the mammalian mitochondrial genome. Nature Reviews Genetics, 23(10), 606–623.
Ragni, B., & Possenti, M. (1996). Variability of coat-colour and markings system in Felis silvestris. Italian Journal of Zoology, 63(3), 285–292.
Sharp, P. M., & Li, W. H. (1987). The codon adaptation index—A measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research, 15(3), 1281–1295.
Shen, Y. Y., Shi, P., Sun, Y. B., & Zhang, Y. P. (2009). Relaxation of selective constraints on avian mitochondrial DNA following the degeneration of flight ability. Genome Research, 19(10), 1760–1765.
Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313.
Stevenson, K. J. (2011). Review of OriginPro 8.5. Journal of the American Chemical Society, 133(14), 5621.
Velli, E., Caniglia, R., & Mattucci, F. (2023). Phylogenetic history and phylogeographic patterns of the European Wildcat (Felis silvestris) populations. Animals, 13(6), 953.
Vigne, J.-D., Guilaine, J., Debue, K., Haye, L., & Gérard, P. (2004). Early taming of the cat in Cyprus. Science, 304(5668), 259.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., & Bordoli, L. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.
Wirth, C., Brandt, U., Hunte, C., & Zickermann, V. (2016). Structure and function of mitochondrial complex I. Biochimica et Biophysica Acta, 1857(7), 902–914.
Yu, H., Xing, Y. T., Meng, H., He, B., Li, W. J., Qi, X. Z., Zhao, J. Y., Zhuang, Y., Xu, X., & Yamaguchi, N. (2021). Genomic evidence for the Chinese mountain cat as a wildcat conspecific (Felis silvestris bieti) and its introgression to domestic cats. Science Advances, 7(26), eabg0221.
Zhang, D., Gao, F., Jakovli, I., Zou, H., & Wang, G. T. (2020). PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1), 348–355.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.