Diversity of Giardia intestinalis: Comparative evaluation of AI stool analysis, traditional techniques, and molecular phylogeny
DOI:
https://doi.org/10.5281/zenodo.17386580Keywords:
AI stool analyzer, Molecular diagnostics, Conventional techniquesAbstract
Giardia intestinalis is one of the most prevalent intestinal protozoan parasites causing Giardiasis, a disease infecting diverse people of any age and characterized by abdominal cramps, diarrhea, and weight loss. Although traditional diagnostic techniques are still widespread, however, newer AI and molecular technologies have much to offer in the way of more precise and quicker detection. The aim of this research was to determine the prevalence of Giardiasis among patients presenting the Public Health Laboratory in Erbil, Iraq, between January–December 2024, and to create a comparison of the effectiveness of traditional, immunological, molecular, and AI-based diagnostic techniques. A total of 25,460 stool specimens were first screened by direct wet mount microscopy. Positives were further analyzed with trichrome and acid-fast stains for morphological identification. Immunochromatographic assays and the KU-F600 AI-based automatic fecal analyzer were utilized. Molecular detection by real-time PCR and standard DNA sequencing was utilized for G. intestinalis infection confirmation. The diversity result of G. intestinalis was evaluated using direct wet mount, revealed 290 positive cases, which was represented 1.14% infection rate. Immunochromatographic and AI-based methods significantly enhanced diagnostic speed and ease compared to conventional microscopy. Molecular techniques (real-time PCR and sequencing) demonstrated the highest accuracy in detecting G. intestinalis. Although traditional microscopy remains a useful screening tool, it is less reliable than molecular and AI-based methods. The KU-F600 AI analyzer exhibited strong potential for rapid and accurate diagnosis. Further research is recommended to validate the broader application of AI technologies in parasitological diagnostics.
References
Abate, M. A., Robbins-Hill, A., Lawler, S., Assefa, Y., & Reid, S. (2024). A scoping review of modifiable and behavioural drivers of infectious gastroenteritis among children in high-income countries. Archives of Public Health, 82(1), 145. https://doi.org/10.1186/s13690-024-01375-5.
Al-Saeed, A. T., & Issa, S. H. (2006). Frequency of Giardia lamblia among children in Dohuk, northern Iraq. Eastern Mediterranean Health Journal, 12(5), 555-561.
Al-Taei, A. H. O. (2019). The prevalence of intestinal parasite among the attending peoples to Al-Hashimyah hospitals for seven years, Babylon province, Iraq. Journal of Physics: Conference Series, 1294(6), 062022. https://doi.org/10.1088/1742-6596/1294/6/062022.
Alharbi, A., Toulah, F., Wakid, M., Azhar, E., Farraj, S., & Mirza, A. (2020). Detection of Giardia lamblia by Microscopic Examination, Rapid Chromatographic Immunoassay Test, and Molecular Technique. Cureus, 12. https://doi.org/10.7759/cureus.10287.
Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2.
Cacciò, S. M., De Giacomo, M., & Pozio, E. (2002). Sequence analysis of the β-giardin gene and development of a PCR–restriction fragment length polymorphism assay to genotype Giardia lamblia cysts from human faecal samples. International Journal for Parasitology, 32(8), 1023-1030. https://doi.org/10.1016/S0020-7519(02)00068-1.
Damitie, M., Mekonnen, Z., Getahun, T., Santiago, D., & Leyns, L. (2018). Molecular epidemiology of Giardia duodenalis infection in humans in Southern Ethiopia: a triosephosphate isomerase gene-targeted analysis. Infectious Diseases of Poverty, 7(1), 1-10. https://doi.org/10.1186/s40249-018-0397-4.
Feng, Y., & Xiao, L. (2011). Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clinical Microbiology Reviews, 24(1), 110-114. https://doi.org/10.1128/CMR.00033-10.
Foronda, P., Bargues, M. D., Abreu-Acosta, N., Periago, M. V., Valero, M. A., Valladares, B., & Mas-Coma, S. (2008). Identification of genotypes of Giardia intestinalis of human isolates in Egypt. Parasitology Research, 55(5), 444-447. https://doi.org/10.1111/j.1550-7408.2008.00348.x.
Garcia, L. S., Arrowood, M., Kokoskin, E., Paltridge, G. P., Pillai, D. R., Procop, G. W., Ryan, N., Shimizu, R. Y., & Visvesvara, G. (2017). Practical guidance for clinical microbiology laboratories: laboratory diagnosis of parasites from the gastrointestinal tract. Clinical Microbiology Reviews, 31(1), e00025-00017. https://doi.org/10.1128/cmr.00025-17.
Gautam, J., Parajuli, R. P., & Pandey, K. (2024). Prevalence and associated factors of intestinal parasitic infections in the Badi indigenous communities of Western Nepal. Journal of Health, Population and Nutrition, 43(1), 211. https://doi.org/10.1186/s41043-024-00694-1.
Ghosh, S., Debnath, A., Sil, A., De, S., Chattopadhyay, D. J., & Das, P. (2000). PCR detection of Giardia lamblia in stool: targeting intergenic spacer region of multicopy rRNA gene. Molecular Cellular Probes, 14(3), 181-189. https://doi.org/10.1006/mcpr.2000.0302.
Goni, P., Martin, B., Villacampa, M., Garcia, A., Seral, C., Castillo, F., & Clavel, A. (2012). Evaluation of an immunochromatographic dip strip test for simultaneous detection of Cryptosporidium spp, Giardia duodenalis, and Entamoeba histolytica antigens in human faecal samples. European Journal of Clinical Microbiology and Infectious Diseases, 31, 2077-2082. https://doi.org/10.1007/s10096-012-1544-7.
Gurgitano, M., Angileri, S. A., Rodà, G. M., Liguori, A., Pandolfi, M., Ierardi, A. M., Wood, B. J., & Carrafiello, G. (2021). Interventional Radiology ex-machina: Impact of Artificial Intelligence on practice. La Radiologia Medica, 126, 998-1006. https://doi.org/10.1007/s11547-021-01351-x.
Guy, R. A., Xiao, C., & Horgen, P. A. (2004). Real-time PCR assay for detection and genotype differentiation of Giardia lamblia in stool specimens. Journal of Clinical Microbiology, 42(7), 3317-3320. https://doi.org/10.1128/jcm.42.7.3317-3320.2004.
Hajare, S. T., Chekol, Y., & Chauhan, N. M. (2022). Assessment of prevalence of Giardia lamblia infection and its associated factors among government elementary school children from Sidama zone, SNNPR, Ethiopia. PLoS ONE, 17(3), e0264812. https://doi.org/10.1371/journal.pone.0264812.
Halliez, M. C., & Buret, A. G. (2013). Extra-intestinal and long term consequences of Giardia duodenalis infections. World Journal of Gastroenterology, 19(47), 8974-8985. http://dx.doi.org/10.3748/wjg.v19.i47.8974
Harb, A., Abraham, S., O'Dea, M., Hantosh, H. A., Jordan, D., & Habib, I. (2020). Sociodemographic Determinants of Healthcare-Seeking Options and Alternative Management Practices of Childhood Diarrheal Illness: A Household Survey among Mothers in Iraq. American Journal of Tropical Medicine and Hygiene, 104(2), 748-755. https://doi.org/10.4269/ajtmh.20-0529.
Hasan, T. A. H., Muhaimid, A. K. A., & Mahmoud, A. R. (2020). Epidemiological study of Giardia lamblia in Tikrit city, Iraq. Systematic Reviews in Pharmacy, 11(9), 102-106. https://dx.doi.org/10.31838/srp.2020.9.17.
Hobbs, E. C., Colling, A., Gurung, R. B., & Allen, J. (2021). The potential of diagnostic point of care tests (POCTs) for infectious and zoonotic animal diseases in developing countries: Technical, regulatory and sociocultural considerations. Transboundary and Emerging Diseases, 68(4), 1835-1849. https://doi.org/10.1111/tbed.13880.
Hussein, S. R. (2022). Prevalence of Diarrhea Caused by Intestinal Parasites in Children in AL-Kufa City, Iraq. The Egyptian Journal of Hospital Medicine, 89(1), 4723-4727. https://dx.doi.org/10.21608/ejhm.2022.260585.
Kenneth, M. H., Joseph, T., & Rose, N. (2024). AI Methods and Algorithms for Diagnosis of Intestinal Parasites: Applications, Challenges and Future Opportunities. East African Journal of Information Technology, 7(1), 366-379. https://doi.org/10.37284/eajit.7.1.2282.
Kumar, S., Arif, T., Ahamad, G., Chaudhary, A. A., Khan, S., & Ali, M. A. M. (2023). An Efficient and Effective Framework for Intestinal Parasite Egg Detection Using YOLOv5. Diagnostics, 13(18), 2978-2991. https://doi.org/10.3390/diagnostics13182978 .
Lalle, M., Pozio, E., Capelli, G., Bruschi, F., Crotti, D., & Cacciò, S. M. (2004). Genetic heterogeneity at the β-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. International Journal for Parasitology, 35(2), 207-213. https://doi.org/10.1016/j.ijpara.2004.10.019.
McPherson, R. A., & Pincus, M. R. (2022). Henry's Clinical Diagnosis and Management by Laboratory Methods. (24th ed.). Elsevier, 1618pp.
Nisar, M., Khan, F., Ahmad, N., Ullah, S., Ullah, A., & Farooqi, M. W. (2024). Geographic And Demographic Influences on The Epidemiological Patterns of Giardia lamblia Infection in Rural Sites District Swat. Indus Journal of Bioscience Research, 2(02), 103-110. https://doi.org/10.70749/ijbr.v2i02.121.
Orfanou, D. C., Papadopoulos, E., Cripps, P. J., Athanasiou, L. V., & Fthenakis, G. C. (2011). Myiasis in a dog shelter in Greece: Epidemiological and clinical features and therapeutic considerations. Veterinary Parasitology, 181(1), 374-378. https://doi.org/10.1016/j.vetpar.2011.04.006.
Parčina, M., Reiter‐Owona, I., Mockenhaupt, F., Vojvoda, V., Gahutu, J., Hoerauf, A., & Ignatius, R. (2017). Highly sensitive and specific detection of Giardia duodenalis, Entamoeba histolytica, and Cryptosporidium spp. in human stool samples by the BD MAX™ Enteric Parasite Panel. Parasitology Research, 117, 447-451. https://doi.org/10.1007/s00436-017-5720-7.
Pritt, B. S. (2015). Chapter 4 - Molecular Diagnostics in the Diagnosis of Parasitic Infection. In A. Sails & Y.-W. Tang (Eds.), Methods Microbiol (Vol. 42, pp. 111-160). Academic Press. https://doi.org/https://doi.org/10.1016/bs.mim.2015.05.001
Qadir, M. S., Hssein, Y. T., Karim, S. I., Rasheed, M. K., Palani, Z. M. R., Mohammed, A. B., Satar, H. M., Hassan, K. A., Omer, K. D., & Karim, A. K. (2022). Prevalence of Giardia lamblia among children in Sulaimani city, Iraq. International Journal of Health Sciences, 6(S2), 14827-14834. https://doi.org/10.53730/ijhs.v6nS2.8941.
Read, C. M., Monis, P. T., & Thompson, R. C. (2004). Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR–RFLP. Infection, Genetics and Evolution, 4(2), 125-130. https://doi.org/10.1016/j.meegid.2004.01.002.
Richard, R. L., & Yusof, H. (2018). Advancements in Parasite Diagnosis and Challenges in the Management of Parasitic Infections: A Mini Review. Regional Conference on Science, Technology and Social Sciences, 22, 667–677. https://doi.org/10.1007/978-981-13-0074-5_64.
Rosado, L., Da Costa, J. M., Elias, D., & Cardoso, J. S. (2017). Mobile-based analysis of malaria-infected thin blood smears: automated species and life cycle stage determination. Sensors, 17(10), 2167-2188. https://doi.org/10.3390/s17102167.
Roswell, M., Dushoff, J., & Winfree, R. (2021). A conceptual guide to measuring species diversity. Oikos, 130(3), 321-338. https://doi.org/10.1111/oik.07202.
Ryan, U., Hijjawi, N., Feng, Y., & Xiao, L. (2019). Giardia: an under-reported foodborne parasite. International Journal for Parasitology, 49(1), 1-11. https://doi.org/10.1016/j.ijpara.2018.07.003.
Ryan, U. M., Monis, P. T., Enemark, H. L., Sulaiman, I. M., Fayer, R., & Thompson, R. C. (2004). Cryptosporidium suis n. sp. (Apicomplexa: Cryptosporidiidae) in pigs (Sus scrofa). Journal of Parasitology, 130(3-4), 197-207. https://doi.org/10.1016/j.vetpar.2005.03.002.
Sarkari, B., Hosseini, G., Motazedian, M. H., Fararouei, M., & Moshfe, A. (2016). Prevalence and risk factors of intestinal protozoan infections: a population-based study in rural areas of Boyer-Ahmad district, Southwestern Iran. BMC Infectious Diseases, 16(1), 703-707. https://doi.org/10.1186/s12879-016-2047-4.
Schuurman, T., Lankamp, P., Belkum, A., Kooistra-Smid, M., & Zwet, A. (2007). Comparison of microscopy, real-time PCR and a rapid immunoassay for the detection of Giardia lamblia in human stool specimens. Clinical Microbiology and Infection, 13(12), 1186-1191. https://doi.org/10.1111/j.1469-0691.2007.01836.x.
Shetty, O., Gurav, M., Bapat, P., Karnik, N., Wagh, G., Pai, T., Epari, S., & Desai, S. (2021). Moving next-generation sequencing into the clinic. Indian Journal of Medical and Paediatric Oncology, 42(03), 221-228. https://doi.org/10.1055/s-0041-1732854.
Shin, J.-H., Lee, S.-E., Kim, T. S., Cho, S.-H., Chai, J., & Shin, E. (2018). Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples. Korean Journal of Parasitology, 56(5), 419-427. https://doi.org/10.3347/kjp.2018.56.5.419.
Soares, F. A., Benitez, A. d.-N., Santos, B. M. d., Loiola, S. H. N., Rosa, S. L., Nagata, W. B., Inácio, S. V., Suzuki, C. T. N., Bresciani, K. D. S., & Falcão, A. X. (2020). A historical review of the techniques of recovery of parasites for their detection in human stools. Revista da Sociedade Brasileira de Medicina Tropical, 53, e20190535. https://doi.org/10.1590/0037-8682-0535-2019.
Sulaiman, I. M., Fayer, R., Bern, C., Gilman, R. H., Trout, J. M., & Schantz, P. M. (2003). Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis. Emerging Infectious Diseases, 9(11), 1444-1452. https://doi.org/10.3201/eid0911.030084.
Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512-526. https://doi.org/10.1093/oxfordjournals.molbev.a040023.
Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120.
Van Lint, P., Rossen, J., Vermeiren, S., Elst, V., Weekx, S., Van Schaeren, J., & Jeurissen, A. (2013). Detection of Giardia lamblia, Cryptosporidium spp. and Entamoeba histolytica in clinical stool samples by using multiplex real-time PCR after automated DNA isolation. Acta Clinica Belgica, 68(3), 188-192. https://doi.org/10.2143/acb.3170.
Verweij, J., Blangé, R., Templeton, K., Schinkel, J., Brienen, E., Van Rooyen, M., Van Lieshout, L., & Polderman, A. (2004). Simultaneous Detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum in Fecal Samples by Using Multiplex Real-Time PCR. Journal of Clinical Microbiology, 42(3), 1220-1223. https://doi.org/10.1128/jcm.42.3.1220-1223.2004.
Wambani, J., & Okoth, P. (2022). Impact of Malaria Diagnostic Technologies on the Disease Burden in the Sub-Saharan Africa. Journal of Tropical Medicine, 2022(1), 1-8. https://doi.org/10.1155/2022/7324281.
Won, E., Kim, S., Kee, S.-J., Shin, J. H., Suh, S., Chai, J., Ryang, D., & Shin, M. (2016). Multiplex Real-Time PCR Assay Targeting Eight Parasites Customized to the Korean Population: Potential Use for Detection in Diarrheal Stool Samples from Gastroenteritis Patients. PLoS ONE, 11(11), 1-14. https://doi.org/10.1371/journal.pone.0166957.
Zahedi, A., Ryan, U., Monis, P. T., & Oskam, C. (2017). Molecular typing of Giardia duodenalis in humans in Queensland–first report of assemblage E. Parasitology, 144(9), 1154-1161. https://doi.org/ 10.1017/S0031182017000439.
Zaki, M., & Dhubyan, Z. (2022). Prevalence of Entamoeba histolytica and Giardia lamblia Associated with Diarrhea in Children referring to lbn Al-Atheer Hospital in Mosul, Iraq. Archives of Razi Institute, 77(1), 73-79. https://doi.org/ 10.22092/ARI.2021.356312.1820.
Zaman, R. F., Khanum, H., Nargis, S., & Das, P. K. (2017). Comparison of saline, iodine and koh wet mount preparations for occurrence of parasites in stool samples from patients attending ICDDR, B. Bangladesh Journal of Zoology, 45(2), 159-170. https://doi.org/10.3329/bjz.v45i2.35711.
Zhang, Y.-G., Chen, J., Pan, H., Xiao, J., Jiang, L., Zhu, Q., Wu, H.-Y., & Wang, Z.-Y. (2022). Development and Preliminary Application of a Triplex Real-Time Quantitative PCR Assay for the Simultaneous Detection of Entamoeba histolytica, Giardia lamblia, and Cryptosporidium parvum. Frontiers in Microbiology, 13, 1-9. https://doi.org/10.3389/fmicb.2022.888529.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Wildlife and Biodiversity

This work is licensed under a Creative Commons Attribution 4.0 International License.